
els are steady-state models, in which traffic demands are assumed
to be constant and the input and output flows reach equilibrium (2,
10). Further improvement includes providing queue length in small
time stamps on the basis of vehicle arrival and departure profiles,
first applied in the software TRANSYT (11). This approach was later
extended and named the incremental queue accumulation method
(12, 13). Stochastic analysis is also introduced to address the sto-
chastic and dynamic nature of arterial traffic (10, 14). Several recent
studies formulate traffic queuing as a Markov chain renewal process
(15–18); the queue length is thus estimated on the basis of the con-
dition of previous time steps. The other category of models is based
on shock waves of the queue formation and dissipation. These shock
wave models can provide detailed temporal and spatial information
for the queuing process (6, 7, 19).

Queue length estimation methods leading to practical applications
are limited. One of the major difficulties that input–output models
encounter is the occurrence of long queues. When the rear of the
queue exceeds the advance vehicle detector that provides the arrival
traffic volume, the inflow cannot be accurately obtained; the result is
large estimation errors (8, 9). This limitation is significant because
long queues are common on congested arterial links. Although analy-
sis based on shock waves is able to address the problem of long
queues (9), detailed information about traffic conditions is required to
detect the necessary shock waves; this information is difficult to
obtain through existing arterial traffic data collection systems.

Recent studies indicate an increasing interest in providing real-
time estimates of queue length (3, 9, 20, 21). These studies show the
benefit and importance of using new data sources, such as high-
resolution loop detector data (aggregated in small time intervals or
individual vehicle counts) and probe vehicle data. As a new format
of probe data, vehicle trajectory data is a topic attracting researchers’
interest. Several studies use trajectory data for shock wave detection
(22, 23), whereas a few focus on intersection performance. Comert
and Cetin (24) studied the conditional probability distribution of the
queue length at an isolated intersection given the locations of probe
vehicles in the queue. They found that only the location of the last
probe in the queue is necessary for queue length estimation. How-
ever, the assumption that the actual percentage of probe vehicles
among the traffic stream is known limits the application of this
method. A simulation study by Shladover and Kuhn (25) investi-
gated the feasibility of using probe trajectories, but it also follows
the sampled travel time approach. An impressive study about free-
way travel time estimation was conducted by Claudel et al. (26), in
which the probe trajectory measurement was converted to density
estimation using the Moskowitz function (27, 28).

Using probe trajectory data for arterial performance measurement
is more complicated because of the periodic turbulence from signals
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Queue length estimation is an important component of intersection per-
formance measurement. Different approaches based on different data
sources have been presented. With the latest developments in vehicle
detection technologies, especially probe vehicle technologies, use of vehi-
cle trajectory data has become possible. In this paper, an improved
method for queue length estimation for signalized intersections is pro-
posed. This method is able to provide cycle-by-cycle queue length esti-
mation for signalized intersections with sampled vehicle trajectories as
the only input. The keystone of the entire approach is the concept of the
critical point (CP), which represents the changing vehicle dynamics. A
CP extraction algorithm is introduced to identify CPs from raw trajec-
tories. Using the CPs related to queue formation and dissipation, the
authors propose an improved queue length estimation method based on
shock waves. The performance of this approach is evaluated with several
data sets under different flow and signal timing scenarios, including a
recently collected data set from a Global Positioning System logger. The
results indicate that this trajectory-based approach is promising.

Queue length is one of the most important performance measures of
an intersection. Through the use of queue length, other arterial per-
formance measures, such as intersection delay, travel time, and level
of service can be estimated quite readily. For traffic engineers, these
performance measures provide indicators for identifying problems,
thereby helping decision makers improve the level of service from
individual intersections to the entire road network (1). The provision
of timely and accurate performance measures to travelers can save
travel time and costs.

The problem of queue length estimation has been investigated
for about five decades. Many approaches based on different data
sources have been presented. In general, on the basis of the problem
formulation, most queue length estimation methods can be classi-
fied in two categories: input–output models (2–5) and shock wave
models (6–9). Input–output models can be generalized as the analy-
sis of vehicle accumulation before the intersection. Most early mod-
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and local frictions. A primary shock wave–based model using the
vehicle trajectory data has been demonstrated in the authors’ previous
work (29). An improved approach is presented in this paper. This
approach is tested by numeric experiments using simulation data, real
trajectory data from the next generation simulation program (NGSIM)
(30), and Global Positioning System (GPS) data from recently col-
lected field data. The paper concludes with an overview of the study
and a discussion of future work.

METHODOLOGY

Given the intersection and link geometric characteristics, the intent
is to develop a real-time estimation model for intersection queue
length using vehicle trajectory data as the only input. The trajectory
of a vehicle can be represented as a series of points, {xt}, where xt is
a record of the vehicle’s dynamics at time t. xt is a vector and xt = [l, v],
where l is the location and v is the speed. In some cases, the accel-
eration rate, a, may also be included; that is, xt = [l, v, a]. To model
a vehicle trajectory, a specific subset of the trajectory {xt}, called
critical points (CPs){xc

t} (29), is defined as the border points of the
regimes of different basic movements on the trajectory. The types of
basic movements (29) include uniform motion, uniformly accelerated
motion, and uniformly decelerated motion. Conversely, if the CPs are
given, the trajectory of a vehicle can be reconstructed.

The overall flowchart of the proposed methodology is shown in
Figure 1. CPs are first extracted from trajectories. CPs related to triv-
ial disturbances are screened out, and five types of CPs related to the
queuing process are selected for signal detection and queue length
estimation. The real-time signal timing is detected, and finally, the
cycle queue length is estimated. This paper is focused on a new CP
extraction algorithm and a comprehensive shock wave–based queue
length estimation method that is compared with the authors’ previous
work (29).

Extraction of Critical Points

A simple threshold algorithm (29) was used to identify CPs, using
speed and acceleration rate. The algorithm presented here uses the
location and the speed instead because not all tracking devices are able
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to provide the acceleration rate. Although it is straightforward to cal-
culate the acceleration rate using the speed profile, the speed fluctua-
tion caused by the measurement error is amplified by the differential
calculation.

By definition, the first point on the trajectory is picked as a default
CP; the problem lies in determining whether the following point
indicates the same movement. If it does, this following point is not
a CP; otherwise, the point is a new CP. The process restarts from the
new CP until the end of the trajectory is reached.

To determine whether there is a movement change, the prob-
lem is formulated as a classification problem over an unlabeled
data set. Classification has been intensively studied in the area of
machine learning (31); a standard formulation procedure can be
used here. The two classes are the non-CP (labeled negative) and
the CP (labeled positive); trajectory points are categorized in the
two classes according to a specifically defined distance to a ref-
erence point. The sample features used to classify, however, are
the relative differences between consecutive points instead of the
characteristics of the points themselves.

The classification algorithm is described by the following:

1. The beginning point is a natural CP and is used as the reference
point.

2. The distances from other points to the beginning point is
calculated as

where

loc_err = location projection error,
T = time interval between two continuous points, and

speed_err = speed projection error.

The location projection error for the ith (i ≥ 2) point is defined as
(assume the index of the beginning point is one)

where loc(i) is the location of the ith point and s(p) is the speed of
p the point.

The speed projection error for the ith (i ≥ 2) point is defined as
(assume the index of the beginning point is one)

where d(p) is the distance from the pth point to the line that connects
the beginning point and the ith point on the time–speed space.

The line on the time–speed (x − y) space from the beginning point
to the ith point is given by

The speed error of point (x, y) to this line is defined as the prediction
error:
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3. Assume that the first n (in this study, n = 5) points after the
beginning point are in the same movement regime, named the neg-
ative pool. The mean μ and variance σ2 of the distances for the points
in the group can be easily calculated. For the points after the first n,
the following procedure is conducted:

a. Conduct a one-tail t-test at a% confidence level (a = 90 in
this study) to check the hypothesis that the new point does not
have significantly longer distance than the points in the pool.

b. If the t-test hypothesis is accepted, the point is classified as
negative; add it to the negative pool and update mean μ and variance
σ2 using the new negative pool. If the t-test hypothesis is rejected,
check the next three points. If the t-test of two or more points from
the three points is rejected, a new CP has been found; update the
beginning point as the new CP and go to Step 1. Otherwise, add the
point to the negative pool and go to Step 3a.
4. Search until all points are checked.

In summary, this algorithm calculates the distances (Equation 1)
from the following points to the beginning point, which is used as
the benchmark, and uses a one-tail t-test to classify. After a new CP
has been found, the beginning point is updated as the new CP until the
last available point is reached. By adopting a statistic test, this algo-
rithm is more tolerant to data noise; it also avoids subjective judg-
ment in determination of the thresholds in the threshold algorithm as
compared with the previous method (29).

Critical Points Related to Queuing Process

The problem is to identify the CPs that are related to the queue forma-
tion and dissipation. CPs are related to changes in traffic conditions,
either significant or trivial. CPs resulting from local disturbances in
traffic flow should be neglected.

Figure 2 shows three shock waves and five types of CPs referred
to in the following discussion. Shock Wave 1 is the queue formation
shock wave; Shock Wave 2 is the queue discharging shock wave;
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Shock Wave 3 is the forward propagating shock wave generated
after Shock Wave 1 and Shock Wave 2 intersect. A Type I CP is the
beginning point of deceleration caused by the signal light turning red.
A Type II CP is the point at which the vehicle stops and joins the
queue. A Type III CP is the beginning point of acceleration caused
by the signal light turning green. A Type IV CP is the CP at which
the arriving vehicle is slowed by the discharging queue. A Quasi-
Type IV CP is a point on the trajectory at which the undelayed probe
vehicle crosses the stop line. The Quasi-Type IV CP indicates the
bound of time for a Type IV CP. The virtual shock wave (the bound
of Shock Wave 3), which is parallel to Shock Wave 3, provides the
upper bound of the queue length.

In this study, a rule-based CP filtering algorithm is used to screen
out negligible CPs on the basis of time and speed characteristics. All
the probe trajectories are first classified as stopped, slowed, and
undelayed according to their speed profiles. Type I, II, and III CPs
are from stopped trajectories, and they are selected using the method
introduced in the authors’ previous work (29). Type IV CPs are from
slowed trajectories. A Type IV CP is the CP with minimal speed,
and the time differences from the previous and next CPs are longer
than 3 s. A Quasi-Type IV CP is the intersecting point of the undelayed
trajectory and the stop line.

Signal Timing Detection

Signal timing is the major factor influencing travel time on signal-
ized arterials. Most studies related to arterial travel times use signal
timing as input for the models (32–35). However, real-time signal
timing is not always available for online or even offline operations.
According to the 2007 National Traffic Signal Report Card (36),
traffic monitoring and data collection received a grade of F, and
“almost half of the agencies (43%) reported having little to no reg-
ular, ongoing program for collecting and analyzing traffic data for
signal timing.” Ban el al. explored a method to derive signal timing
using the delay measurements by virtual trip line technology based

Time
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Shock Wave 2

CP Type I
CP Type II
CP Type III
CP Type IV
Quasi-Type IV

Shock Wave 3
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queue length

Real queue length
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FIGURE 2 Circuital points related to queue.



on GPS-equipped cell phones (37). Using sampled travel times, they
found that a 40% penetration rate of the probe was needed to obtain
reliable signal timing detection. A shock wave method (29) was
used for real-time signal timing detection; the method detects signal
timing information with a lower sample rate.

The shock wave speeds are calculated with the Lighthill–Whitham–
Richards model (38–40). Only the final equations are listed in this
paper. Details are available in the authors’ previous work (29).

The start time of the green light can be calculated as

where

TCP III = time stamp of the Type III CP,
LCP III = distance from the Type III CP to the stop bar,

qs = saturation flow rate,
km = saturation flow density, and
kj = jam density.

The start time of the red light can be obtained by

where

TCP I = time stamp of the Type I CP,
LCP I = distance from the Type I CP to the stop bar,
LCP II = distance from the Type II CP to the stop bar, and
vCP I = speed of the Type I CP.

Dynamic Queue Length Estimation

The definition of queue length differs among studies. Some studies
use the number of vehicles, whereas some use the distance. Occasion-
ally, only stopped vehicles are considered to be in the queue; in other
cases, the slowly moving vehicles arriving at the rear of the queue are
also counted. In this study, the queue length is defined as the distance
from the front bumper of the last stopped or slowly moving (less than
5 mph) vehicle to the stop bar before the intersection.

The queue length estimation model consists of two submodels:
one based on the instantaneous queue length and one based on Shock
Wave 3. The instantaneous queue length is defined as the queue
length at a specific time stamp when the queue is cumulating. From
the foregoing analysis, the available Type II CPs indicate the profile
of the instantaneous queue length. The instantaneous queue length
submodel (29) depends on Type II CPs to estimate the arrival rate to
obtain the queue length estimation. Because the progress of queue
formation is greatly affected by the arrival pattern, different arrival
assumptions are made according to intersection control types. This
submodel is summarized as follows.

Estimation Based on Instantaneous Queue Length

An isolated intersection’s arrival traffic is not affected by the
upstream signalized intersection. The Highway Capacity Manual
defines an isolated intersection as “at least 1 mile from the nearest
upstream signalized intersection” (41). For an isolated intersection,
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the arrival flow rate within a cycle can be assumed to be constant.
Therefore, the queue length increases at a constant rate and can be
easily calculated using the detected instantaneous queue length.
Given the already detected signal timing, the maximum queue length
can be calculated as

where

qu = upstream arrival flow rate,
qs = saturation flow rate,

Tg, Tr = start time of green and red lights (Figure 2), respectively,
and

kj = jam density.

The upstream arrival rate qu can be estimated as

where LCP II is the distance from the Type II CP to the stop bar and
TCP II is the time stamp of the Type II CP.

For an intersection affected by an upstream signal, the arrival pat-
tern varies significantly within a cycle. As an approximation, the
queue increase process is modeled as a piecewise linear line. More
than one Type II CP is needed for this case. Assume there are n − 1
available Type II CPs, and use the point at the start of red as the addi-
tional point (the distance to the stop bar is zero); order them chrono-
logically as a list of points on the queue length and time plane. The
average queue increase rate between each two consecutive points
can be calculated as

where

i = index, i = 0, 2, . . . , n − 2,
LCP II, i = distance from the ith Type II CP to the stop bar, and
TCP II, i = time stamp of the ith Type II CP.

Then several queue length estimates can be obtained:

where

Lmax, Llast, Lmin = three queue length estimates, which use the max-
imum queue increase rate, the last available queue
increase rate, and no queue increase, respectively;

qmax = maximum of all the qi; and
tg,n = time from the last Type II CP to line of Shock

Wave 2; it is calculated by
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on the basis of the line equation of Shock Wave 2 (y = v2 (x − tg)),
where v2 is the speed of Shock Wave 2.

The queue length of the cycle is therefore estimated as a weighted
average:

where w1, w2, w3 are the weights and w1 + w2 + w3 = 1, w1, w2, w3 ≥ 0.
In this study,

and 

where tg, max is the time from the latter Type II CP on the segment
where the maximum queue increase rate is achieved. The farther
from Shock Wave 2, the smaller the weight.

Estimation Based on Shock Wave 3

It is intuitive that because the movement of a vehicle is determined
almost entirely by the vehicle before it, only the traffic information
before the probe vehicle can be obtained. Therefore, in using the
stopped probe vehicles (as the instantaneous queue length submodel),
only the lower bound of the queue length is guaranteed. However,
Shock Wave 3 is generated after the queue reaches its maximum
length, and therefore, CPs related to Shock Wave 3 (Type IV and
Quasi-Type IV) are able to provide additional information about the
queue length.

The speed of Shock Wave 3 is calculated by Equation 14:

where

qs = saturation flow rate,
qu = upstream arrival flow rate,
ks = saturation flow density, and
ku = upstream density.

Assuming the time axis is the x-axis and the distance to the stop bar
is the y-axis (as shown in Figure 2), Shock Wave 2 and Shock Wave 3
are described by Equations 15 and 16, respectively:

where TCP IV is the time of the Type IV CP and LCP IV is the distance
from the Type IV CP to the stop bar.

The intersection point of the two lines is represented as

The value of the y-coordinate is the queue length.
It is intuitive that the portion of the Type IV CP is much smaller

than Type I, II, or III because Shock Wave 3’s forward propagation
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results in a much narrower time window for Type IV CPs (Figure 2).
In fact, the undelayed probe vehicles could also provide information
about the queue length. As shown in Figure 2, a Quasi-Type IV CP
is defined when an undelayed probe vehicle transverses the stop line.
Therefore, the virtual shock wave (the bound of Shock Wave 3)
provides an estimate of the upper bound of the queue length.

This virtual shock wave is described by Equation 18:

where TQ_IV is the time of the Quasi-Type IV CP.
The intersection point of the two lines (y is the queue length) is

The problem here is how to estimate the speed of Shock Wave 3, v3.
If more than one Type IV CP is available, the speed of Shock Wave 3
can be readily calculated. For cases in which only one Type IV CP
is available, the upper bound of the queue length can be obtained
using the possible range of the speed of Shock Wave 3, which can
be estimated according to the fundamental diagram in Figure 3.

The shock wave speed equals the slope of the line connecting the
two traffic flow states. Whether the shock wave is forward or back-
ward propagating is determined by whether the slope is positive or
negative. Although different fundamental diagrams have different
shapes, the density–flow functions before saturation are nonconvex.
That is, the upstream arrival flow rate qu is less than saturation flow
rate qs; the upstream vehicle speed vu is higher than the saturation
flow speed vs; and the upstream density ku is less than saturation den-
sity ks. Therefore, the shock wave speed is between 0 and vs. The
upper bound of the queue lengths can be obtained accordingly.

Furthermore, the results of the two submodels could be com-
bined. Table 1 shows how to combine the estimates for different CP
availability scenarios.

DATA SOURCE

Three data sets were used in this study: a simulation data set, an
NGSIM (42) data set, and a GPS data set collected in a recent field
study.

The simulation data set was generated by a hypothetical arterial
corridor network built in Paramics microsimulation software. The
speed limit on the corridor is 40 mph and the cycle lengths of the inter-
section signals are 80 s with 45 s green time. Signals are coordinated,
and the offsets of signals are equal to the free-flow travel times. As
shown in Table 2, the data from a boundary intersection were used in
the isolated intersection scenario, and the data from a middle inter-
section were used in the nonisolated intersection case. Two levels of
demand were used for different traffic flow conditions: 800 vehicles
per hour per lane for the off-peak hour and 1,800 vehicles per hour per
lane for the peak hour.

The Peachtree data set from the NGSIM (42) was chosen in this
study. This data set was obtained from a 2,100-ft segment of
Peachtree Street in Atlanta, Georgia, collected between 4:00 and
4:15 p.m. November 8, 2006. This street is a north–south street
with a speed limit of 35 mph. Trajectory data were collected by
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chosen as the test bed (shown in Figure 4). US-14 is a major
east–west corridor carrying the largest traffic volume of any road-
way in Brookings. The posted speed limit is 35 mph. The data col-
lection was from 4:15 to 5:30 p.m., which covered the peak hour.
The intersection peak-hour traffic volumes vary from 2,800 to
3,500 at these intersections. Twelve probe vehicles were used.
The GPS data logger recorded second-by-second position and
speed data, with a position accuracy of 3 m root mean square error
with differential GPS and a speed accuracy of 0.12 mph root mean
square. (Differential GPS is an enhancement to GPS that uses a
network of fixed, ground-based reference stations to alleviate
handset measurement errors.) Four video cameras were mounted
to record the actual signal timing parameters and queue lengths
for each cycle.

NUMERICAL EXPERIMENT RESULTS

The performance of the queue length estimation is measured by
mean absolute percentage error (MAPE):

where n is the total trial number and groundtruth is the actual queue
length being estimated.
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FIGURE 3 Traffic states on fundamental diagram.

TABLE 1 CP Scenarios and Result Fusion

Type II CP

Type IV and Quasi-Type IV Available Unavailablea

Quasi-Type IV

One Type IV CP

Two Type IV or more

Unavailable

aWhen Type II CP is not available, signal timing cannot be obtained because
Type I and III CPs are not available either. Tg in the equation is calculated using
the signal parameters of the previous cycle.

bThe weights are calculated as

where l1, l2 are time distances from the Type II and Type IV–Quasi-Type IV CPs
to Shock Wave 2.
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=
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Weighted averageb of the
results of Equation 8
(isolated intersection) or
Equation 13 (nonisolated
intersection) and 
Equation 19.

Weighted averagea of the
results of Equation 8
(isolated intersection) or
13 (nonisolated intersec-
tion) and Equation 17.

Average of the results of
Equation 8 (isolated
intersection) or 13 (non-
isolated intersection) and
Equation 17.

Equation 8 (isolated inter-
section) or Equation 13
(nonisolated intersection)

Equation 19

Equation 17

Equation 17

Use the previ-
ous cycle’s
estimate

TABLE 2 Simulation Data Sets

Scenario Source

Isolated intersection, off-peak Upstream link of a boundary 
Isolated intersection, peak intersection

Nonisolated intersection, off-peak Middle intersection affected by 
Nonisolated intersection, off-peak upstream signal

video cameras mounted on a 30-story roadside building. Intersections
on the segment were coordinated with a cycle length of 100 s during
the collection time.

The GPS log data set was collected in Brookings, South Dakota,
April 7, 2010. A section of US-14 (also called 6th Street) was



For the isolated intersection case, one trajectory was randomly
picked for estimation in each cycle. For the coordinated intersection
cases, three trajectories were randomly picked in each cycle. For each
case, experiments were run 20 times. For the GPS log data set, to
obtain the ground truth queue length, the number of vehicles in the
queue was recorded and multiplied by the average distance headway.

Table 3 summarizes the experiment results.
For the GPS log data set, the eastbound approach on 22nd Avenue

is used as the case study. The MAPE of the queue length estimation
is 25.49% within the 12 recorded cycles. One cause for a higher
MAPE than that obtained for the first two data sets is that the ground
truth queue length was calculated by the number of queued vehicles
simply multiplied by the predefined distance headway (25 ft). In
addition, engineering judgment was applied to determine whether a
vehicle was in the queue.

The MAPE for all the scenarios of validation and evaluation is
around 20%, a promising outcome. Depending on the data set used, the
model would have larger errors (overestimates) in two special cases:
(a) when the arrival rate changes greatly within a cycle (in some cycles
of the NGSIM data set, the traffic changes from the saturation flow to
almost zero) and only Type II CPs are available; and (b) when the
queue length is quite short and only Quasi-Type IV CPs are available.
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This phenomenon can be explained in two ways: (a) for the estimation
based on instantaneous queue length (using Type II CPs), a higher flow
rate leads to a higher probability to have a picked trajectory (the probe
vehicle), which leads to a higher detected arrival rate and therefore, an
overestimated queue length; (b) because the Shock Wave 3 submethod
(using Quasi-Type IV CPs) calculates the upper bound of the queue
length despite the real queue length, the shorter the queue, the larger
the error. However, without the occurrences of the two special cases,
the performance of this method would be much better.

CONCLUSION AND FUTURE WORK

An improved approach for estimating queue length with vehicle tra-
jectory data is proposed. To address the challenge of converting the
microscopic detections into macroscopic performance measurements,
a CP extraction method is presented. CPs on vehicle trajectories are
defined as the points representing the changing vehicle dynamics.
This CP extraction algorithm also has the potential to reduce commu-
nication costs for probe vehicles in real-time data collection applica-
tions. To identify queue formation and dissipation shock waves, five
types of special CPs related to the queuing process are then defined
and chosen from the extracted CPs. Through the application of
Lighthill–Whitham–Richards shock wave theory, an improved queue
length estimation method based on shock waves is proposed. The
model can provide cycle-by-cycle queue length estimation and is
evaluated by three data sets: a simulated data set, an NGSIM data
set, and a field-collected GPS data set. The results indicate that this
trajectory-based approach is promising. Two special cases that may
cause larger errors of the queue estimation are also discussed.

This method can provide travelers with instantaneous arterial traf-
fic conditions in real-time applications. If only offline trajectory data
are available, this method can still be implemented in the evaluation
and optimization of arterial traffic control systems. It could also be
applied in the IntelliDrive environment when integrated into the road-
side or intersection infrastructures. A future study includes improve-
ment in the model to reduce overestimation in the two special cases
through the use of additional data, such as the queue length estimates
of previous cycles or upstream intersections.

FIGURE 4 Field data collection route (red lines indicate route of probe vehicles; blue squares show study intersection).

TABLE 3 MAPE of Queue Length (in Distance) Estimation

Scenarios and No. of
Signal Setting Data Set Intersection Cycles MAPE (%)

Isolated Simulation Nonpeak 12 17.46
Peak 12 19.23

Coordinated Simulation Nonpeak 12 20.61
Peak 12 21.57

NGSIM At 10th (SB) 7 20.92
At 11th (SB) 7 19.11
At 12th (SB) 7 21.72
At 13th (SB) 7 22.26

GPS log At 22nd (EB) 12 25.49

NOTE: SB = southbound; EB = eastbound.
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