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ABSTRACT

A median crossover crash (MCC) is defined as an accident in which a vehicle traverses the median 
area and penetrates the opposing travel lane.  Crashes vary from vehicles coming to rest in the 
opposing lane, to vehicles passing through the opposing lane without hitting an opposing vehicle, 
to head-on or sideswipe impacts with opposing vehicles.  Until recently, the magnitude, 
characteristics, and causes of MCCs were not widely investigated. 

The objective of this research was to determine the magnitude, severity, and predictability 
of MCCs in Wisconsin state.  A total of 15,194 crash reports from Wisconsin’s median divided 
freeways and expressways were analyzed for the period of 2001-2003.  The results of this analysis 
identified 631 reported MCCs over this three-year period.  The magnitude of MCCs indicated that 
this crash type is a considerable issue in Wisconsin and required additional investigation to 
determine the causes of these crashes and to develop appropriate countermeasures.

To identify the significant attributes of MCCs, ordinal logistic regression models were 
developed to predict MCC severity based on a number of predictors, including: roadway and 
driver characteristics, traffic operations, incident management, temporal elements, and 
environmental factors. Crash severity was selected as the response variable so that the significant 
variables identified and associated countermeasures developed focused initially on improving
safety, although reducing the frequency was also of critical interest.

Statistically, the initial statistical analysis found no predictors to have significant effects on 
the severity of the 631 MCCs, although the time of year (Quarter predictor) was found to have a 
relatively low p-value.  Additionally, further analysis showed that driver age and time of year
affected crash severity on high volume roadways.  Road condition was found to affect severity 
when traffic volume was low.  Moreover, weather condition and emergency response time were 
found to be significant if median width is inadequate.  If the median is wider, no significant 
explanatory variable is responsible for aggravating the median crossover crash severity. 

The results indicate that modeling MCC severity as an ordinal response is statistically 
appropriate, and resultant findings could be used by traffic authorities to determine the probability 
of crash severity based on a set of predictors and facilitate the decision-making process regarding 
roadway safety enhancements. 

Keywords: Median crossover crash, logistic regression, freeway operations, medians, crash 
severity
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BACKGROUND

Over the four year period from 2000 to 2003, totally 169,789 persons lost their lives on America’s 
roadways [1].  In 2003 alone, 42,643 motorists in the United States died in roadway crashes; this 
number of fatalities has remained nearly unchanged for more than a decade. Of the 42,643 
fatalities in 2003, over 25,000 were a result of vehicles leaving the travel lane. Lane departures, or 
run-off-road (ROR) crashes, are associated with vehicles that leave the travel lane and enter the 
shoulder, ditch area, or other roadside environment.  Often times, these crash types also involve 
collisions with one or more of any number of  objects including opposing vehicles, bridge rail, 
utility poles, embankments, guardrails, parked vehicles, or trees [2]. In recent years, 
approximately 55 percent of traffic fatalities were a result of ROR type crashes [3].  Roughly 40 
percent of fatal crashes were single-vehicle ROR crashes. 

Over that same four-year period, 3,206 people were killed in crashes on Wisconsin’s 
roadways, representing nearly 1.9 percent of the nation’s gross [4]. In 2003 alone, Wisconsin 
experienced 836 fatalities in 748 fatal crashes.  An average of 757 motorists was killed annually in 
Wisconsin from 1993 to 2003 [5]. Wisconsin is also no exception to the high number of ROR 
crashes experienced nationally. A recent study found that approximately 54 percent of all non-
intersection crashes on undivided roadways in Wisconsin were ROR type crashes [6].  This 
number may be even higher on the divided roadway system.

Separation of opposing traffic volumes can be important and effective in the attempt to 
prevent head-on collisions, one of the most potentially serious types of crashes resulting from lane 
departures.  Median areas to separate opposing traffic flows have long been an important design 
consideration related to roadway safety. The American Association of State Highway 
Transportation Officials (AASHTO) defines a median as the “portion of a highway separating 
directions of the traveled way” (7). AASHTO’s A Policy on Geometric Design of Highways and 
Streets states that “medians are highly desirable on arterials carrying four or more lanes” of traffic 
[7].  Even with the implementation of AASHTO’s policy and wide median widths of 60 feet or 
more, crashes involving vehicles traveling through the median and entering the opposing traffic 
stream are increasing in frequency across the United States, and Wisconsin is believed to be no 
exception to this trend.

A median crossover crash (MCC) is defined as a vehicle traversing the median area and 
penetrating the opposing travel lane.  Crashes vary from vehicles coming to rest in the opposing 
lane, to vehicles passing through the opposing lane without hitting an opposing vehicle, to head-on 
or sideswipe impacts with opposing vehicles.  The primary causes of MCCs are not well 
understood. Accordingly, a detailed analysis of MCC magnitude and severity was necessary to 
improve safety on Wisconsin highways. Moreover, crash severity modeling could be used to
facilitate the decision-making process with regard to identifying common attributes of MCC and 
associated roadway safety enhancements. 

This paper describes the evaluation of MCCs and the statistical methodology used to 
develop crash severity models.  Logistic regression procedures are used to investigate potential 
associations among the response and various predictors and to compute the probability of crash 
severity given a set of roadway attributes. Specifically, this research tests an ordinal response for 
crash severity prediction and determines which explanatory variables best explains the severity of 
MCCs. 
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LITERATURE REVIEW

Statistical approaches have been applied to model crash severity as a function of geometric, 
operational, temporal, environmental, and other explanatory variables. Modeling crash severity as 
a discrete outcome involves estimating the probability (conditional probability in nature) that a 
vehicular crash has a certain severity by determining the likelihood of outcomes given that a crash
(i.e., a median crossover crash) has occurred. 

By using the nested logit model, Lee et al [8] estimated the severity of run-off-road crashes 
in Washington State. Environmental, temporal, driver, roadway, and roadside factors were 
involved to estimate property damage and possible injury probability for rural run-off-road crashes 
conditioned on no evident injury. It was found that wet pavement surfaces resulted in possible 
injury, motorists younger than 25 had higher likelihood of being involved in injury crashes, 
intoxicated motorists were more likely to be involved in injury crashes, and crashes in the 
presence of a horizontal curve had more likelihood of incurring an injury. 

In a study of using log-linear models by Abdel-Aty et al [9], the results indicated that
significant relationships exist between driver age, average daily traffic (ADT), injury severity,
collision manner, vehicle speed, alcohol involvement, and roadway characteristics. Another study 
identified the behavioral and personal predictors of automobile crash and injury severity in 
Hawaii. In this study, Kim et al [10] used log-linear models to predict automobile crash and injury 
severity. It was found that certain driver behaviors, which were alcohol/drug involvement and 
lack of seat belt use, significantly enhance the likelihood of more severe crashes and injuries. 
Driver errors were found to have a small influence, while personal characteristics such as age and 
gender were generally insignificant. Importantly, log-linear models were useful for study of the 
association among categorical variables; however, logistic regression model were more 
appropriate when a response variable is used to measure the direct effects of a set of independent 
variables. 

Other researches have been completed that modeled crash severity by using logistic 
regression.  For example, logistic models were employed in two studies to explore the injury 
severity of head-on highway crashes and that of young-driver crashes. In the case of modeling
young-driver crash severity, Dissanayake et al [11] utilized a sequential binary logistic approach to 
compare response variable with two levels. As the result, independent variables proved to be most 
influential in predicting the young-driver crash severity encompassed the following: alcohol/drugs
involvement; occupant ejection; impact point; crash location; existence of horizontal curve or 
vertical grades at the crash site; vehicle speed; and safety restraint usage. Donnell et al [12], by 
using both ordinal and nominal responses, employed logistic regression to model median-related 
crash severity, based on the data from roadway inventory and crash records for Pennsylvania 
Interstate highways. Explanatory variables such as cross-section, traffic volume, and 
environmental predictors were included in resultant logistic models, and the results indicates that 
modeling crash severity as an ordinal response rendered appropriate results for cross-median 
crashes, whereas a nominal response was proved to be more appropriate for median barrier crashes.
Explanatory variables such as pavement surface conditions, use of drugs or alcohol, presence of an 
interchange entrance ramp, horizontal alignment, crash type, and average daily traffic volumes 
significantly affected the MCC severity.

Summarily, past studies show that logistic regression model has been frequently harnessed
to model crash severity. A number of explanatory variables, such as traffic operational measures, 
environmental conditions, geometric configurations and safety restraint use, have been frequently 
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used to estimate the odds of crash severity. It is worth noting that past research efforts mainly 
concentrated on two distinct structures: the binary response and a nested model. Only quite a few 
predictive models have been developed to model crash severity by treating the response in an 
ordinal or multinomial way. 

DATA AND METHODOLOGY 

Statistical Model
Linear regression is a common way of studying association between a dependent variable and 
independent variables in crash data.  Unfortunately, the relationship between crash severity and 
the explanatory factors in this study are not linear. A more appropriate method is logistic
regression, a widespread method for predicting the probability of the outcome of a dichotomous 
dependent variable based on a set of explanatory predictors [13]. Conceptually, logistic regression 
is defined as a model whose dependent variables are discrete or categorical, and it describes the 
relationship between a categorical response variable and a set of explanatory predictors no matter 
whether these predictors are continuous or not. Logistic regression is similar to linear regression 
but is used to estimate the probability that the event of interest will occur. The regression 
coefficients provide estimates of the impact of each independent variable on the odds of the event 
of interest occurring. Used prevalently to assess risk factors for various diseases, the logistic 
regression has also been exploited widely in transportation research.

For a logistic regression model, the categorical response variable can be a binary variable, 
an ordinal variable, or a nominal variable. Importantly, each type of categorical variables requires 
different techniques to model its relationship with all predictors involved in a resultant logistic 
model. For a binary response variable y, the linear logistic regression model has the form as 
follows [14]:  

 

i
i

i
i Xp

ppLogit '])1(ln[)( βα +=−= (1)

Where, 
)|.(Pr 1 iii Xyyobp ==  is the response probability to be modeled, and 1y  is the first 

ordered level of y ;
α = Intercept parameter;

'β = Vector of slope parameters;

iX = Vector of explanatory variables. 

This logistic regression equation models the logit transformation of the i th observation 
probability, ip , as a linear function of the explanatory variables in the vector, iX . In addition, a

dependent variable is regarded as ordinal when the absolute distance between its categories is not 
identified and there is an evident ordering of all categories, and a proportional odds model should 
be fitted to an ordinal response variable such as low, medium and high. The proportional odds 
model has its mathematical form as follows:

Xit ii βαθ +=)(log (2)

Where
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iθ = the i th cumulative probabilities;

iα = Intercept parameter for the i th cumulative logit;

β = Vector of slope parameters;

X = Vector of explanatory variables.

Accordingly, the intercept may be different for different cumulative logit functions, but the effect 
of the explanatory variables will be the same across different logit functions. This ‘rule’ is the 
proportional assumption and leads to the name “proportional odds model”.  The proportional odds 
model is also referred as the logit version of an ordinal regression model, and it extends binary 
logistic regression further to handle ordinal response variables. Methodologically, several selected 
independent variables were used in such a modeling technique to predict the probability that the 
dependent variable is of an ordinal scale, and all parameters are estimated by maximum likelihood 
methods. 

In this study, a logistic regression model for MCC severity was developed for some 
Wisconsin divided highways.  The response categories are assumed to be of three ordered levels of 
severity: PDO (Property-Damage-Only), Injury, and Fatality. Severity was selected as the 
response variable so that the significant variables identified and associated countermeasures 
developed focused initially on enhancing roadway safety, although reducing the frequency was 
also of critical interest.  The proportional odds model was employed to determine the probability 
of fatal, injury or PDO crashes given certain traffic operational, geometric, and environmental 
conditions. The LOGISTIC procedure in SAS-9.1 was used to estimate the model parameters and 
assess the model goodness-of-fit [17].  After the ordinal logistic model was utilized to fit the data 
set, if the proportional odds assumption was not violated, the ordinal logit model was appropriate 
for the data set. Otherwise, by using appropriate SAS procedures, the models were reestimated 
with another model which is potentially more appropriate than its ordinal counterpart. 

The premise behind this research was to build a model to describe the association between 
the ordinal response (MCC severity) and some explanatory variables (such as weather condition, 
geometric configuration, driver demographics, and reaction time after crash occurrence).  The first 
step in the modeling process was to establish probabilities:

1π = Probability of “Property Damage Only”;

2π = Probability of “Injury”; 

3π = Probability of “Fatality”; 

11 πθ = : Probability of “Property Damage Only”;

212 ππθ += : Probability of “Property Damage” or “Injury” (or: “not Fatality”).

Then the cumulative logits can be developed:

Xit βα
ππ

π
θ

θθ +=
+

=
−

= 1
32

1

1

1
1 ln

1
ln)(log (3)

Xit βα
π
ππ

θ
θθ +=+=
−

= 2
3

21

2

2
2 ln

1
ln)(log (4)
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Although this model is in terms of cumulative odds, it is not difficult to recover the probabilities 
of each response category:

X
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Data Sources and Collection
The domain of this research was restricted to MCCs on freeways and expressways in Wisconsin 
from 2001 to 2003. A three year period was chosen to get comprehensive, normalized results of 
the three most recent years of available data. Nearly all divided highway sections without median 
barriers in Wisconsin were considered.  With the assistance of the Wisconsin Department of 
Transportation (WisDOT) traffic engineering staff, Interstate, expressway, and freeway segments 
with a divided median were selected as examination sites from the state’s roadway database. The 
highways selected are presented in section I of Table 1. 

Only crash data available through the Wisconsin crash records system were considered. 
Crashes in Wisconsin are documented by law enforcement personnel on the Wisconsin Motor 
Vehicle Accident Report (WMVAR) which is a Scantron sheet designed to record crash 
information into a computer database. A form contains various data from each crash that is 
scanned and then archived into searchable databases, including location and time of day, drivers 
and vehicles information, weather and road conditions, presence of alcohol, manner of collision, 
first and most harmful event, and supporting narrative and drawing. Unfortunately, the accident 
form has no entry space to directly identify MCCs. Therefore, all crashes that involved lane 
departures on median divided roadways were identified as potential crossover crashes and were 
selected for possible inclusion in this analysis.

Over 15,000 potential crossover crashes were identified and the associated WMVAR
report obtained to review the narratives and crash diagrams. Each of the crash reports were 
individually reviewed by researchers to determine if the crash was indeed a MCC.  Crashes not 
considered to be a MCC were discarded from the analysis.

Selected crashes were classified by location (county and roadway) and severity.  Crashes 
were grouped into three categories: Fatal (At least one person was killed in the crash), Personal 
Injury (At least one person sustained bodily injuries during the crash), and Property Damage Only 
(No person was hurt in the crash).  Median widths and ADTs for the crash sites were added to 
each crash report’s data summary.  Median widths were obtained from the Wisconsin State Trunk 
Highway Log.  ADTs were obtained from the 2003 Wisconsin Highway Traffic Volume Data 
Book.  To obtain the correct median width and ADT, each selected crash was located either 
through its WisDOT Reference Point (RP) number or crossroads reference. Several roadways and 
crash locations were verified through field visits.
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TABLE 1  Specifics of Median Crossover Crash Data

   Section I: WI HIGHWAYS REVIEWED FOR CROSSOVER CRASHES

Interstates I-39, I-43, I-90, I-94
U.S. Highways (USH) 10, 12, 14, 18, 41, 51, 53, 141, 151
WI State Highways (STH) 23, 29, 30, 35, 54, 57, 172, 441

   Section II: SUMMARY OF CROSSOVER CRASH TOTAL CALCULATIONS

Initial Selected Crossover Crashes 732
Object Crossover Crashes
     Tire Crossover Crashes
     Other Object Crossover Crashes

-64
(-52)
(-12)

Median Barrier Crossover Crashes (vehicle jumped 
existing barrier)

-32

Intentional Crossover Crashes
(median u-turns or police evasion)

-5 

Final Selected Crossover Crashes
Vehicle Crossover Crashes
Trailer Crossover Crashes

631
624
7

 Section III: MEDIAN CROSSOVER CRASHES BY YEAR

Year MCCs
2001 197
2002 229
2003 205
Total 631

   Section IV: MEDIAN CROSSOVER CRASHES BY SEVERITY

Frequency Distribution of Crashes
MCC Severity Level Number of Crashes Percent
Property Damage only 254 40.3
Injury 336 53.2
Fatal 41 6.5

Total 631 100.0

   Section V: MEDIAN CROSSOVER CRASHES AND MEDIAN WIDTH
Median Width (ft) MCCs
< 30 13 (2.1%)
30 – 39 33 (5.2%)
40 – 49 34 (5.4%)
50 – 59 135 (21.4%)
60 – 69 348 (55.1%)
70 – 79 10 (1.6%)
80 + 58 (9.2%)

Wisconsin Median Crossover Crashes
As a result of the aforementioned procedure, a total of 15,194 WMVCR reports were obtained 
from the WisDOT crash data archives for the period of 2001 to 2003, and reviewed/analyzed 
between May and September of 2004.  After completing the review and analysis, 732 crossover 
crashes were initially identified. Each selected MCC was re-examined to both determine the first 
action (potential cause) and to also confirm that each was by definition a median crossover crash.  
A total of 101 crashes were disqualified from the crossover crash data set since they involved
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objects crossing over the median such as tires, animal carcasses, crash debris, people, or other 
variables that median design would likely not have hindered.  Tire crossovers compromised 52 of 
the 64 total object crossovers.  Thirty two crashes involved vehicles vaulting a median barrier 
already in place.  Five MCCs were intentionally committed.  The remaining 12 crashes were made 
up of a variety of object crosses (debris, deer, etc).  This re-examination reduced the total number 
of crashes for evaluation to 631.  The breakdown of the reductions taken to achieve the final total 
is given in section II of Table 1.  Figure 1 illustrates all 631 MCCs on the Wisconsin divided 
highway network from 2001 to 2003, which clearly provides a visual impression of widespread 
MCCs in this state.

Median Crossover Crashes, Median Width, and ADT

Wisconsin guidelines for installation of median barriers use median width and ADT to determine 
if a median barrier is warranted.  To evaluate this relationship, the median width of each selected 
crossover median crash was plotted against the ADT of the crash.

Section III of Table 1 shows the distribution of each of the three years evaluated, while 
Table 2 shows the breakdown of crashes selected for each roadway reviewed.  According to Table 
2, it can be seen that MCCs occurred prevalently at various highway classes (Interstates, US 
Highways, and WI State Highways).  In instances where two, or even three, highways run 
concurrently, the commonly referenced/coded highway was selected.  The length of the highway 
is the total mileage of the divided highway without median barrier that was reviewed.  A ratio of 
‘MCCs selected’ to ‘crashes reviewed’ was not possible due to the fact that not all reviewed 
crashes were MCCs, i.e., some crashes occurred on highway ramps, and some involved vehicles at 
an at-grade intersection with a highway.  Section V of Table 1 lists the total number of crossover 
median crashes by median width.

Figure 2 displays the median width of each selected crash plotted against the ADT of the 
crash, with the Wisconsin median barrier standard inserted.  Of the 631 selected crashes, 514 
crossover median crashes (81.5%) occurred at locations at which the Wisconsin FDM states that a 
median barrier was not warranted.

In an attempt to derive a median crossover crash rate, crashes were grouped together based 
on their roadway and county location.  Crossover crashes for each segment were normalized by 
VMT to obtain a crossover median crash rate.  The rates were plotted against the average median 
width for each segment.  Figure 3 displays the 66 highway segment points and their average 
median width.  Note that several highway segments exhibit noticeably high crossover crash rates 
in spite of large median widths.  Thus, very little linear correlation was found between MCC rate 
and median width.    
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TABLE 2  Selected Crossover Median Crashes by Highway

Highway Counties

Crossover 
Median 
Crashes

Highway 
Length 
(miles)

Crashes/ 
Year/ Mile

I-39 Rock, Dane, Columbia, Marquette, Waushara, 
Portage, Marathon

107 182.38 0.196

I-43 Waukesha, Milwaukee, Ozaukee, Sheboygan, 
Manitowoc, Brown

44 148.86 0.0985

I-90 La Crosse, Monroe1, Juneau1, Sauk1, Columbia1,2, 
Dane2, Rock2

19 45.27 0.140

I-94 St. Croix, Dunn, Eau Claire, Jackson, Monroe, 
Juneau, Sauk, Columbia2, Dane2, Jefferson, 

Waukesha

127 269.46 0.157

USH 10 Portage, Waupaca, Calumet 6 31.35 0.0638
USH 12 Dane, Walworth 16 40.54 0.132
USH 14 Dane3 3 7.17 0.140
USH 18 Iowa, Dane3 15 26.67 0.187
USH 41 Washington, Fond Du Lac, Winnebago, 

Outagamie, Brown, Oconto
112 136.54 0.273

USH 45 Washington4 7 26.11 0.0894
USH 51 Dane, Columbia2, Marquette2, Waushara2, 

Portage2, Marathon2, Lincoln
19 61.59 0.103

USH 53 La Crosse, Chippewa, Barron, Washburn, Douglas 35 149.37 0.0781
USH 141 Oconto 2 8.40 0.0794
USH 151 Grant, Iowa5, Dane5, Columbia, Dodge 41 99.75 0.137
STH 23 Sheboygan 1 12.73 0.0262
STH 29 Chippewa, Clark, Marathon, Shawano, Brown 64 183.46 0.116
STH 30 Dane 4 3.28 0.407
STH 35 St. Croix 2 8.36 0.0797
STH 54 Portage, Brown 1 16.77 0.0199
STH 57 Sheboygan 3 15.36 0.0651

STH 172 Brown 1 9.29 0.0359
Total 631 1,482.71 0.142

1Crashes on concurrent sections of I-90/I-94 were counted as part of I-94.
2Crashes on concurrent sections of I-39/I-90, I-39/I-90/I-94, and I-39/USH 151 were counted as part of I-39.
3Crashes on concurrent sections of USH 12/USH 14 and USH 12/USH 18 were counted as part of USH 12.
4Crashes on concurrent sections of USH 41/USH 45 were counted as part of USH 41.
5Crashes on concurrent sections of USH 18/USH 151 were counted as part of USH 18.
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Median Width vs. ADT
(Each Data Point Represents One Crash)
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FIGURE 2  Crossover median crashes with the Wisconsin median barrier standard.

Crossover Crashes per VMT vs. Median Width 
(Each Data Point Represents One Highway-County Segment)
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FIGURE 3  Crossover median crash rates vs. average median width.
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IDENTIFICATION OF VARIABLES RELATED TO CRASH SEVERITY

Table 3 shows the roadway, environmental, driver behavior, personal characteristics, temporal, 
incident managerial, and traffic operational data that were available for modeling the MCC
severity in Wisconsin and the detailed description of all these variables and construction of their 
corresponding indicator variables. As indicated, 12 explanatory variables were encompassed for 
estimating crash severity model parameters. Four variables (total ADT, median width, driver age, 
and reaction time spent after crash) were continuous and the remaining eight explanatory variables 
were categorical or discrete, while the response variable (MCC severity) was initially considered 
ordered with three levels: Property Damage, Injury and Fatality. Section III of Table 1 shows the 
distribution of each of the three years evaluated and the frequency distribution of MCC severity
for the three year analysis period.

A bivariate logistic regression of each individual variable was performed to investigate the 
effect of each independent variable on MCC severity which acted as the ordinal response variable. 
For this purpose, point estimates and odds ratios were reviewed to identify unfavorable logistic 
regression variables [16].

Section I of Table 4 demonstrates the results of the bivariate logistic regression analysis, 
including the name of each explanatory variable, likelihood ratio chi-square ( 2χ ) test with k-1 
degrees of freedom (k is the number of levels of independent variable), and p-values for each level 
independent variable.  Furthermore, the individual odds ratios are also computed based on the 
estimated coefficients for the logistic model. 

Scrutiny of each individual independent variable and its effect on crash severity indicates 
that ‘Quarter’ (crash date), ‘Weather’, ‘Road Condition’, ‘Road Cause’ (Initial cause of crash), 
and ‘Reaction’ (EMS response time) predictors have the greatest influences on crash severity.
Moreover, it was important that all potential interaction terms were also included in the modeling.  
The interaction terms included the ‘Weather’ predictor as well as the ‘Reaction’ predictor.  The
SAS PROC LOGISTIC statement was employed with a significant level of 0.10 to maintain
variables in the model during selection, and the STEPWISE model selection procedure was also 
used.  The resultant multivariate ordinal logistic regression is displayed in section II of Table 4. 

Interpretation of the final MCC severity model in Table 4 indicates that the score test for 
the proportional odds assumption has a p-value of 0.8944 ( =2χ 0.6089, DF=3), which verifies that 
the proportional odds model is adequately valid for fitting the data because the null hypothesis that 
the regression lines for cumulative logits are parallel is retained. The p-value of the likelihood 
ratio chi-square test is 0.0310 ( =2χ 8.8720, DF=3) which means that the global null hypothesis for 
the whole model is rejected. Statistically, this result indicates that the predictor variables given in 
the model affect MCC severity. 
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TABLE 3  Wisconsin Median Crossover Crash Severity Data
Raw Data
Name Data Explanation Data 

Type
Variable Names
used in SAS 9.1 Categories/Ranges

ACCDSVR Median crossover crash severity Categorical SVRLEVEL
(Response)

1= Property Damage
2= Injury
3= Fatal

DAYNMBR Day of a week in which the median 
crossover crash occurred

Categorical WEEKDAY
(predictor)

1= Mon
2= Tue
3= Wed
4= Thu
5= Fri
6= Sat
7= Sun

ALCFLAG Flag on data to indicate whether a driver 
was listed on the police report as 
drinking alcohol before the recorded 
median crossover accident

Categorical LIQUOR
(predictor)

1= No
2= Yes

ROADCOND Pavement surface of the road at the point 
of median crossover crash site

Categorical RDCOND
(predictor)

1= Dry
2= Wet
3= Snow
4= Ice

WTHRCOND Weather condition under which the 
recorded median crossover crash 
occurred

Categorical WEATHER
(predictor)

1= Clear
2= Wind/Cross wind
3= Cloudy
4= Foggy
5= Rainy
6= Sleety
7= Snowy

LGTCOND Code which describes the light condition 
at the time of the accident

Categorical LIGHT
(predictor)

1= Clear 2= Dawn
3= Dusk 4= Dark

RDCAUSE Roadway-based initial cause of crash
Categorical ROADCOZ

(predictor)
1= Other
2= Wind
3= Lost Control
4= Barrier
5= Vehicle Collision
6= Wet road
7= Snowy surface
8= Icy surface

GEOMETRY Geometric condition of median 
crossover crash site

Categorical GEO
(predictor)

1= Straight
2= Curve or 

Near Intersection

ACCDDATE
Date of a month on which the recorded 
median crossover crash occurred

Categorical QUARTER
(predictor)

1: Jan to Mar
2: Apr to Jun
3: Jul to Sep
4: Oct to Dec 

REACTION The hour spent for the enforcement 
agency’s being notified of the recorded 
median crossover crash and reaction to 
rescue actions

Continuous REACTION (predictor) Range: 0-23 hours

AGE The age of a customer at the time of the
recorded median crossover crash, 
generated from birthdate 

Continuous AGE (predictor) Range: 15 -91 years

MDNWDTH
Highway median width where the 
recorded median crossover crash 
occurred 

Continuous MDNWDTH (predictor) Range: 16-276 feet 

TOTALADT
Total ADT

Continuous TOTALADT (predictor) Range: 4,700-92,600 
vehicles per day
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TABLE 4  Bivariate and Multivariate Logistic Regression Analysis for MCC

Section I:  MCC BIVARIATE LOGISTIC REGRESSION ANALYSIS RESULTS
Odds Ratio Estimates

# Predictor DF
 Likelihood
Ratio
(Chi-square)

p-value
Effect Estimate

95% Wald 
Confidence Limit

Quarter 1 vs. 4 0.7711 (0.517, 1.150)
Quarter 2 vs. 4 1.3271 (0.834, 2.111)1 QUARTER (Quarter) 3 8.872 0.031 
Quarter 3 vs. 4 1.3099 (0.824, 2.083)

2 GEO (Geometric condition) 1 0.167 0.683 Geo 1 vs. 2 1.1829 (0.542, 2.586)
Light 1 vs. 4 0.9990 (0.724, 1.380)
Light 1 vs. 4 0.8437 (0.366, 1.946)3 LIGHT (Light condition) 3 0.172 0.982 
Light 1 vs. 4 0.9685 (0.397, 2.363)

4 LIQUOR (Liquor involvement) 1 0.641 0.423 Liquor 1 vs. 2 0.8163 (0.499, 1.335)
Weather 1 vs. 7 1.2815 (0.833, 1.974)
Weather 2 vs. 7 3.2252 (0.674, 15.410)
Weather 3 vs. 7 0.8130 (0.511, 1.294)
Weather 4 vs. 7 0.6313 (0.089, 4.491)
Weather 5 vs. 7 1.1196 (0.549, 2.284)

5
WEATHER (Weather condition)

6 12.513 0.051 

Weather 6 vs. 7 0.5210 (0.251, 1.080)
Roadcoz 1 vs. 8 0.3362 (0.063, 1.806)
Roadcoz 2 vs. 8 4.0633 (0.072, 229.293)
Roadcoz 3 vs. 8 1.7246 (1.124, 2.646)
Roadcoz 4 vs. 8 1.1877 (0.387, 3.640)
Roadcoz 5 vs. 8 1.1735 (0.658, 2.092)
Roadcoz 6 vs. 8 1.1770 (0.653, 2.121)

6 ROADCOZ (Causes by road) 7 12.971 0.073 

Roadcoz 7 vs. 8 0.9930 (0.584, 1.689)
Rdcond 1 vs. 4 1.5023 (0.995, 2.268)
Rdcond 2 vs. 4 1.1140 (0.619, 2.008)7 RDCOND (pavement surface condition) 3 6.864 0.076 
Rdcond 3 vs. 4 0.9343 (0.547, 1.597)
Weekday 1 vs. 7 0.6084 (0.346, 1.071)
Weekday 2 vs. 7 0.7211 (0.392, 1.327)
Weekday 3 vs. 7 0.6991 (0.360, 1.361)
Weekday 4 vs. 7 0.8155 (0.452, 1.471)
Weekday 5 vs. 7 0.8496 (0.485, 1.489)

8
WEEKDAY (Weekday)

6 3.698 0.717 

Weekday 6 vs. 7 0.7276 (0.427,1.239)

9
AGE (Driver age)

1 0.188 0.665 
Coefficient = 
0.002165

SE= 0.005035

10
MDNWDTH (Median width)

1 0.390 0.532 
Coefficient = 
0.002705

SE= 0.004353

11
TOTALADT (Median width)

1 0.009 0.924 
Coefficient = 
4.159E-7 

SE= 4.3217E-6 

12
REACTION (Reaction time)

1 2.414 0.120 
Coefficient =  
0.01910

SE= 0.0123055

Total Observations: 631; Time period for data: 2001-2003; Software used: SAS system 9.1; DF: degree of freedom. 

Section II:  MCC FINAL MULTIVARIATE ORDINAL LOGISTIC REGRESSION MODEL
a:  Analysis of Effects
Effect DF Wald Chi-Square Pr > Chi Square
Quarter 3 8.7729 0.0325
b:  Analysis of Maximum Likelihood Estimates

Parameter Estimate Odds Ratio
Estimated 
SE Wald Statistic p-value

Intercept 3 -2.7062 n/a 0.2125 162.1626 <0.0001
Intercept 2 0.3837 n/a 0.1583 5.8738 0.0154
Quarter 1 (Jan-March) -0.2603 0.771 0.2040 1.6281 0.2020
Quarter 2 (April-June) 0.2829 1.327 0.2367 1.4287 0.2320
Quarter 3 (July-Sept) 0.2704 1.311 0.2366 1.3067 0.2530

Likelihood ratio test: =2χ 8.8720 (DF=3); p-value= 0.0310

Score test for Proportional Odds Assumption: =2χ  0.6089 (DF=3); p-value=0.8944 
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Unfortunately, all the indicator or predictor variables which were retained in the model 
after the stepwise predictor selection procedure were not statistically significant, except for two 
intercepts.  The indicator variable with smallest p-value is Quarter 1 (0.2020).  Although none of 
explanatory variables in the resultant model are significant, their inclusion in the model after 
model selection procedure implies that seasonal factor seems to be the most important explanatory 
variable which contributes to the MCC severity, since the time of year are seasonally related 
winter and wet road events. Albeit all other tests have adequate statistical validity, this failure to 
find the significance of explanatory variables makes the ordinal regression results statistically 
invalid. Accordingly, new directions were considered for bettering the logistic regression 
modeling in order to explore the relationship between crash severity and potentially significant
explanatory variables.

Some studies which applied logistic model to crash severity have found that average daily 
traffic (ADT) volumes affect crash severity significantly [12], and it is also believed by some 
professionals that a relationship exists between median width and MCC frequency. Although both 
were found to be insignificant explanatory variables in the logistic model fitted above, it would be 
informative if some predictors and crash severity are investigated under conditions having 
different ADT or median width. In Wisconsin, a median width of 60 feet is the standard non-
barrier median width for highways with a speed limit greater than 55 mph. For the sampled 631 
MCC data, the median width recorded has a mean of 59.23 ft, a median of 60 ft, and a range of 
260.  In this study, median width was divided into three classes based on equivalently cumulative 
percentiles (33.3%, 66.6%, and 100%), which was tried as a preliminary test scenario for 
investigating MCC severity under unusual conditions.  Similarly, the ADT was classified into 
three levels representing three traffic operational conditions based on the same consideration.  
Table 6 shows the detailed classification of total ADT and median width. The authors were 
initially interested in exploring the effects given by ADT and median width and two-way 
interactions, by constructing a 3 × 3 (ADT versus Median Width) 2-way combination table.
However, due to small sample sizes in most cells, the research was reoriented.  In order to make 
the effects of some explanatory variables embodied in a model in a more protrusive way, only 
untypical and unusual cases were considered for logistic modeling. Subsequently, the logistic 
regression was used to examine the predictor variables, which have strong effects on the odds of 
MCC severity, under four different conditions in two pairs: Inadequate vs. Wider median width, 
and Low vs. High ADT. 

Based solely on 211 MCC with median width not wider than 52 feet, a bivariate logistic 
regression was performed to investigate the effect of each independent variable.  Section I of 
Table 6 displays the results for bivariate logistic models.  The review indicates that ‘Weather’, 
‘Roadcoz’, ‘Rdcond’, ‘Totaladt’, and ‘Reaction’ predictors have the greatest influences on the 
MCC severity.  The resulting multivariate ordinal logistic models are given in section II of Table 
6. 

TABLE 5  Classification of ADT and Median Width
Predictor Class Range Observations

Inadequate 16-52 ft 211
Typical 53-60 ft 306MDNWDTH
Wider 61-276 ft 114
Low 4,700-19,034 vpd 210
Normal 19,035-35,334 vpd 211TOTALADT
High 35,335-92,600 vpd 210
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TABLE 6  Bivariate/Multivariate Logistic Regressions for MCC in Median Width Case
Section I: BIVARIATE LOGISTIC REGRESSION - “INADEQUATE " @ “WIDER” MEDIAN WIDTH

Likelihood Ratio
Chi-square

p-value Parallel lines test
(p-value)

# Predictor DF

I W I W I W
1 QUARTER (Quarter) 3 3.727 2.265 0.293 0.519 0.756 0.737
2 GEO (Geometry) 1 0.046 0.948 0.830 0.330 0.674 0.597
3 LIGHT (Light condition) 3 2.863 1.239 0.413 0.744 0.516 0.625
4 LIQUOR (liquor involvement) 1 0.000 0.570 0.983 0.450 0.393 0.443
5 WEATHER (Weather condition) 6 16.220 2.768 0.013 0.597 0.610 0.762
6 ROADCOZ (Causes by road) 8 11.944 6.851 0.102 0.335 0.809 0.648
7 RDCOND (Road condition) 4 6.783 6.271 0.079 0.099 0.644 0.425
8 WEEKDAY (Weekday) 6 5.042 2.459 0.538 0.873 0.001 0.040
9 AGE (Driver age) 1 1.382 0.873 0.240 0.350 0.054 0.507
10 TOTALADT (Median width) 1 3.585 1.582 0.058 0.209 0.364 0.236
11 REACTION (Reaction time) 1 5.493 0.194 0.019 0.659 0.317 0.617

DF: degree of freedom; I: Inadequate median width; W: Wider median width
Total Observations: I – 211, W – 114; Time period: 2001-2003; Software used: SAS system 9.1

Section II: FINAL ORDINAL LOGISTIC REGRESSION MODEL FOR MEDIAN WIDTH

1-a:  Analysis of Effects for “Inadequate” Median Width
Effect DF Wald Chi-Square Pr > Chi Square
Weather 6 14.8664 0.0213
Reaction 1 7.17287 0.0070

1-b:  Analysis of Maximum Likelihood Estimates
Parameter Estimate Odds Ratio Estimated SE Wald Statistic p-value
Intercept 3 -3.6578 / 0.5366 46.4639 <0.0001
Intercept 2 -0.4945 / 0.4441 1.2401 0.2655
Weather 1 (Clear) 3.0082 20.251 1.4898 4.0771 0.0435
Weather 2 (Windy) 0.4695 1.599 0.3884 1.4612 0.2267
Weather 3 (Cloudy) -0.1381 0.871 0.4325 0.1020 0.7494
Weather 4 (Foggy) 1.7021 5.486 2.1008 0.6565 0.4178
Weather 5 (Rainy) 0.5235 1.688 0.7161 0.5346 0.4647
Weather 6 (Sleety) -1.9333 0.145 0.8595 5.0599 0.0245
Reaction -0.0356 0.965 0.0231 7.17287 0.0070

Likelihood ratio test: =2χ  23.6519 (DF=7); p-value= 0.0013

Score test for Proportional Odds Assumption: =2χ 6.4420 (DF=7); p-value= 0.4892

2-a:  Analysis Of Effects for “Wider” Median Width
Effect DF Wald Chi-Square Pr > Chi Square
/ / / /

2-b:  Analysis of Maximum Likelihood Estimates
Parameter Estimate Odds Ratio Estimated SE Wald 

Statistic
p-value

Intercept 3 -2.4567 / 0.3473 50.0315 <0.0001
Intercept 2 0.4643 / 0.1924 5.8244 0.0158

Likelihood ratio test: =2χ  13.9801 (DF=3);  p-value= 0.0029

Score test for Proportional Odds Assumption: =2χ  1.1578 (DF=3); p-value= 0.7631
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Interpretation reveals that p-value of the likelihood ratio chi-square test is 0.0013 ( =2χ
23.6519, DF=7).  The global null hypothesis for the whole model is rejected. Accordingly, the 
inference is that the predictor variables given in the model influence the MCC severity. 
Additionally, the score test for the parallel lines assumption has a p-value of 0.4892 ( =2χ 6.4420, 
DF=7), which verifies that the proportional odds model is adequately valid for fitting the data. In 
addition, two indicator variables (‘Weather 1’ and ‘Weather 6’) and one predictor (‘Reaction’) are 
statistically significant. Consequently, we can make use of the parameter estimates to quantify the 
effect of significant independent variables on the response variable, in terms of computing the 
odds ratio. Mathematically, the odds ratio is simply a parameter estimate and can be used to 
explain the relative effects of a unit change in predictors on crash severity.

For this model, the relative effects of a driver driving under clear weather conditions
versus a driver under snowy weather conditions is exp (3.0082) =20.251. This means that the 
odds of a PDO crash versus injury or fatality severity are approximately 20 times higher for 
drivers driving in a clear day than for drivers driving in a snowy day. Interchangeably, the odd of 
a fatality versus PDO or Injury crash is enhanced when driving under snowy weather conditions.
Meanwhile, the relative effects of a driving under sleety condition versus a driver under snowy
weather condition is exp (-1.9333) = 0.145.  This indicates that odds of a PDO crash versus injury 
or fatality severity are 0.145 times higher for drivers driving in sleet conditions versus driving in 
snow conditions.  This result also implies that sleet-related crashes have greater severity than 
snow-related crashes. Moreover, the counterpart effect is 0.965 for Reaction predictor.  The odds 
of a PDO crash versus injury or fatality crash will be 0.965 higher for a crash which has EMS 
response times greater than one hour. This implies that the speed of EMS response is critical to 
survivability. On the basis of multivariate ordinal logistic regression results, the ensuing 
regression equations can be written:

321
32

1 0.0356-1.9333-3.0082X-3.6578ln XX+=
+ ππ
π (8)

321
3

21 0356.09333.10082.34945.0ln XXX −−+−=+
π
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Where 
=1X Clear weather indicator (1 if yes, 0 otherwise);

=2X  Sleety weather indicator (1 if yes, 0 otherwise); 

=3X Reaction time predictor.

Accordingly, based on equations (5), (6), and (7), the predicted probabilities can be calculated in 
the following way:
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)(1 InjuryPDOFatality ppp +−= (12)

For the wider median width condition, both ‘Rdcond’ and ‘Totaladt’ were found to be relatively 
strong predictor variables in the bivariate logistic model. However, the analysis failed to screen 
out any significant indicator variables or predictors for the multivariate model. Section II of Table 
6 shows the results for ordinal logistic modeling. 

High ADT vs. Low ADT 
Based on 420 MCCs with high and low ADT, Table 7 displays the results for the 
bivariate/multivariate logistic regression for two cases. In bivariate logistic model, ‘Quarter’, 
‘Age’, and ‘Mdnwdth’ predictors were found to have strong influences under high ADT condition. 
Meanwhile, ‘Weather’, ‘Roadcoz’, ‘Rdcond’, and ‘Mdnwdth’ were found to be desirable logistic 
regression variables for low ADT condition. 

For high ADT conditions, a likelihood ratio test ( =2χ 15.2505, DF =4, p-value=0.0042) 
shows that the global null hypothesis for the whole model is rejected. Associated score test for 
proportional odds assumption ( =2χ 3.9580, DF =4, p-value= 0.4117) retains the null hypothesis.  
Furthermore, the Wald chi-square test indicates that one indicator (‘Quarter 1’) and one predictor 
(‘Age’) have significant p-values of 0.0106 and 0.0041. The comparative effects of a driver being
one year older versus a younger driver is exp (0.0284) =1.029. This means that the odds of a PDO 
crash versus injury or fatality crash is 1.029 times higher for a driver in each year of age.  In other 
words, a younger driver is more likely to be involved in a more severe MCC. 

The relative effects of a time of year in terms of the first quarter versus the fourth quarter is 
exp (-0.9532) = 0.386. This means that the odds of a crash severity of PDO versus crash severity 
of injury or fatality are 0.386 times higher for drivers who are driving in a day during the first 
quarter than for drivers who are driving in a day during the fourth quarter of a year.  Implicatively, 
this means that driving in the first quarter is more hazardous than doing so in the fourth quarter. 

For low ADT case, both likelihood ratio test ( =2χ 13.9801, DF =3, p-value=0.0029 and 
score test for proportional odds assumption ( =2χ 1.1578, DF =3, p-value= 0.7631) are good. In 
addition, the Wald chi-square test indicates that ‘Rdcond 1’ have significant p-values (0.0036). 
The odds of a PDO crash versus injury or fatality is exp (0.9974) = 2.711 times higher for drivers 
driving on a dry pavement surface than for drivers on an icy roadway surface. This also implies 
that driving on icy roadway will be more likely to be involved in a more severe MCC than on a 
dry pavement surface. 
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TABLE 7 Bivariate/Multivariate Logistic Regressions for MCC in Total ADT Case

Section I: MCC BIVARIATE LOGISTIC REGRESSION - "HIGH" AND “LOW” ADT

Likelihood Ratio 
Chi-square

p-value Parallel Lines Test
(p-value)

# Predictor DF

H L H L H L
1 QUARTER (Quarter) 3 6.425 5.920 0.093 0.116 0.249 0.980 

2 GEO (Geometry) 1 0.005 1.043 0.942 0.307 0.468 0.451 

3 LIGHT (Light condition) 3 1.341 0.838 0.719 0.840 0.593 0.571 

4 LIQUOR (Liquor involvement) 1 0.357 0.510 0.550 0.475 0.749 0.737 

5 WEATHER (Weather condition) 5 3.183 19.109 0.672 0.004 0.368 0.318 

6 ROADCOZ (Causes by road) 8 8.727 16.188 0.273 0.006 0.176 0.817 

7 RDCOND (Road condition) 4 1.946 13.980 0.584 0.003 0.379 0.598 

8 WEEKDAY (Weekday) 6 2.205 10.167 0.900 0.118 0.474 0.192 

9 AGE (Driver age) 1 7.191 1.220 0.007 0.269 0.587 0.133 

10 MDNWDTH (Median width) 1 3.042 4.431 0.081 0.035 0.277 0.101 

11 REACTION (Reaction time) 1 0.871 0.001 0.351 0.981 0.638 0.975 

DF: degree of freedom; H; High ADT; L: Low ADT
Total Observations: H – 210, L – 210; Time period: 2001-2003; Software used: SAS system 9.1

Section II: FINAL ORDINAL LOGISTIC REGRESSION MODEL FOR ADT
1-a:  Analysis of Effects for High ADT

Effect DF Wald Chi-Square Pr > Chi Square
Quarter 3 7.9083 0.0479
Age 1 8.2534 0.0041

1-b:  Analysis of Maximum Likelihood Estimates
Parameter Estimate Odds Ratio Estimated 

SE
Wald 
Statistic

p-value

Intercept 3 -3.3581 / 0.4842 48.1042 <0.0001
Intercept 2 -0.1522 / 0.3859 0.1556 0.6933
Quarter 1 (Jan-March) -0.9532 0.386  0.3728 6.5358 0.0106
Quarter 2 (April-June) -0.0632 0.939 0.4155 0.0231 0.8792
Quarter 3 (July-Sept) -0.3119 0.732 0.3872 0.6487 0.4206
Age 0.0284 1.029 0.00990 8.2534 0.0041

Likelihood ratio test: =2χ 15.2505 (DF=4); p-value=0.0042

Score test for Proportional Odds Assumption: =2χ 3.9580 (DF=4);  p-value= 0.4117

2-a: Analysis of Effects for Low ADT
Effect DF Wald Chi-Square Pr > Chi Square
Rdcond 3 13.4946 0.0037

2-b:  Analysis of Maximum Likelihood Estimates
Parameter Estimate Odds Ratio Estimated 

SE
Wald 
Statistic

p-value

Intercept 3 -3.5051 / 0.4121 72.3522 <0.0001
Intercept 2 -0.0203 / 0.2743 0.0055 0.9411
Rdcond 1 (Dry) 0.9974 2.711 0.3429  8.4616 0.0036
Rdcond 2 (Wet) 0.2844 1.329   0.5511 0.2662 0.6059
Rdcond 3 (Snowy) -0.2059 0.814 0.4382 0.2208 0.6384

Likelihood ratio test: =2χ  13.9801 (DF=3);  p-value= 0.0029

Score test for Proportional Odds Assumption: =2χ  1.1578 (DF=3); p-value= 0.7631
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CONCLUSIONS

Median crossover crash severities were modeled by using ordinal logistic regression using the 
response (crash severity) levels: PDO, Injury, and Fatality.  In the case of the 631 MCCs in 
Wisconsin between 2001 and 2003, no predictors were found to have significant effects on the 
MCC severity if significance level is set at 0.05. However, the results showed that seasons or the 
time of year may play a critical role in determining the MCC severity.  This result is likely due to
the fact that many of the most severe MCC crashes occur during the winter weather months, 
correlating road conditions with time of year.  

Additional statistical analysis showed that younger drivers had a higher severe crash 
probability than older drivers when the traffic volume on roadways is relatively high.  Reasons for 
this are unknown, but may be due to inexperience and risky driving maneuvers.  The seasonal 
factor, directly related to weather conditions and pavement conditions, exerts a dramatic effect on 
the crash severity.  When traffic volume is low, the only significant explanatory variable is road 
condition as driving on an icy pavement surface is more precarious than on a dry roadway.  Under 
the condition of inadequate median width, weather condition has a close relation with crash 
severity, and EMS reaction time after the crash occurrence is also important for decreasing the rate 
of fatalities. Therefore, the speed at which emergency vehicles react to a crash occurrence will 
have a significant impact upon crash consequences.  If the median width is sufficient enough, no 
explanatory variable significantly affects the crash severity.

It is evident that season, weather and road condition variables are causally associated with 
each other and winter snow or ice in Wisconsin is a prime suspect for increasing the frequency and 
severity of MCC. Wisconsin’s geographical location may play the most significant role in 
affecting MCC severity.  Furthermore, the response time of emergency vehicle units and the age 
of drivers are also very influential factors in predicting the MCC severity.  The results of the MCC 
severity modeling in this study could be used by traffic management authorities to determine the 
probability of fatal, injury, and PDO as based on a similar set of environmental or traffic 
explanatory variables. They may be also helpful to facilitate the decision-making process 
concerning roadway safety enhancements, such as median barrier protection. 

RECOMMENDATIONS FOR FURTHER INVESTIGATION

Though substantial research has been presented here, the authors note that there is still more that 
can be done to investigate MCC severity and all related explanatory variables and consequently 
improve the safety of the roadways in Wisconsin.  In continuing research, it will be helpful to 
include additional median geometric data (cross-slope; structure and material) for the locations as 
well as other data for vehicle types involved and occupant restraint use. Speed is also a desirable 
attribute in evaluating crash severity but cannot be determined for each crash.  Additional years of 
crash data may also strengthen the results from this study. Furthermore, it is important to continue 
educate drivers risky driving and crash avoidance related to all crash types, specifically MCCs.  
This includes improved education of drivers about the potential hazardous of winter driving and 
more effective education of younger drivers in how to anticipate and avoid risky scenarios. 
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