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Hierarchical Bayesian Estimation of Safety Performance
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Abstract: A critical part of any risk assessment is identifying how to represent exposure to the risk involved. Recent research s
the relationship between crash count and traffic volume is nonlinear; consequently, a simple crash rate computed as the ratio of
to volume is not suitable for comparing the safety of sites with different traffic volumes. To solve this problem, we describ
approach for relating traffic volume and crash incidence. Specifically, we disaggregate crashes into four types:~1! single-vehicle,~2!
multivehicle same direction,~3! multivehicle opposite direction, and~4! multivehicle intersecting, and then define candidate expo
measures for each~as a function of site traffic volumes! that we hypothesize will be linear with respect to each crash type. This a
describes investigation using crash and physical characteristics data for highway segments from Michigan, California, Washi
Illinois obtained from the Highway Safety Information System. We have used a hierarchical Bayesian framework to fit zero
Poisson regression models for predicting counts for each of the above crash types as a function of the daily volume, segment le
limit and lane/shoulder width using Markov Chain Monte Carlo methods. We found that the relationship between crashes and
volume is nonlinear and varies by crash type, and is significantly different from the relationship between crashes and segmen
all crash types. Significant differences in exposure functions by crash type are proven using analysis of variance and Tukey
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Introduction

A critical part of any risk assessment is identifying the appro
ate measure of exposure to the risk in question. It is useful to
the crash prediction problem by defining number of crashes
the product of exposure to the risk and the risk of a crash in w
vehicles may be involved. However, only the number of cra
is an observable value, as neither risk nor exposure to ri
self-explanatory, and each is dependent on how the other
fined. Therefore, evaluating safety between different tr
modes, or comparing site crash risks is somewhat arbitrary
varies by how one defines exposure.
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This concept of exposure was introduced to highway s
analysis through the definition of the crash rate—the numb
crashes divided by the number of million vehicle-miles trav
~VMT !. The development of this approach was important
identifying truly hazardous locations, as opposed to locations
high volumes but a low number of crashes per vehicle. How
a shortcoming of this approach is that it assumes a linear rel
ship between the number of crashes and the VMT. In fact,
relationship may not be simply linear, and arbitrarily assum
linearity may weaken the accuracy of the crash count predic
As an alternative, Hauer introduced the concept of safety pe
mance functions to generalize the representation of exposur
non-linear function of the traffic volume~Hauer 1995!; this con-
cept is the basis for the research described in this paper.

Logically, exposure can be thought of as a statistical mea
that provides information on the extent of travelers’ vulnerab
to the surrounding crash risk environment. In other words
more a traveler is exposed to crash risks, the greater is the
bility for his involvement in a crash. For a single entity,
amount of exposure can be measured by either the length o
exposed, or by the length of the trip. For a highway segmen
exposure is closely associated with the number of entities ex
during a time period, usually 1 year, and the distance over w
an entity is exposed to the crash risks. Hence, annual av
daily traffic ~AADT ! and segment length are regarded as com
nents of exposure in crash prediction.

Moreover, different crash types have different risks. For si
vehicle crashes, the risk is related to the probability for any g
vehicle to run off the road, collide with roadside objects or

over. For multiple vehicle crashes, however, the probability of the
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collision depends on the occasions when vehicles cross p
meet or follow one another. For example, given the same AA
the risk for a same-direction vehicle crash may be different
that for an opposite-direction crash; this is a result of the var
number of vehicles in each direction. Therefore, the expo
measure is necessarily dependent on crash type and an ana
variance~ANOVA ! test is proposed with the null hypothesis t
the exposure function is the same for all the crash types. Fu
more, a Tukey test will be employed to investigate the varia
within the crash types.

The problem of accurately modeling the true risk of cras
occurring at a highway location is further exacerbated by o
dispersion and the regression-to-mean effect. This effect has
well documented by many, especially Hauer, who derived an
pirical Bayesian approach for estimating the true mean crash
for a location ~Hauer 1997!. Tunaru improved upon Haue
method, using a hierarchical Bayesian generalized linear m
ing approach for multiple crash responses at a location~Tunaru
1999!. These two landmark research efforts provide welcome
amples of how to more accurately evaluate highway safety
they both still compute crash rates using VMT.

Extending these ideas, this paper describes investigation
using hierarchical Bayesian modeling to estimate safety pe
mance functions that best represent the risk of exposure to
different types of highway crash:~1! single vehicle,~2! multive-
hicle same direction,~3! multivehicle intersecting direction, an
~4! multivehicle opposite direction. To focus the study, analys
confined to two-lane rural highway segments in four Un
States states: Michigan, California, Washington, and Illin
Moreover, different prediction model forms are tested with t
effects, the interactions between time and AADT, the interac
between time and segment length and the linear relationsh
tween exposure measures and segment length. The mode
estimated separately for each state to show both model c
tency and differences among states using an ANOVA test wit
null hypothesis that for the same crash type, there is no reg
~state! effect on exposure functions.

Safety Study Design

Fig. 1 depicts a hypothetical nonlinear safety performance f
tion for a highway segment. For any point on the safety pe
mance function curve, the crash ratesN/AADT d, is defined as th
slope of the line joining the origin to that point~as indicated!.
Therefore, if the safety performance function is not a straight
the crash rate varies with the amount of the exposure. Fo
ample, the number of crashes at Point B is greater than at Po
but the crash rate at Point B, conversely, is smaller than at
A, because the slope of the line joining it to the origin is

Fig. 1. Example safety performance function
steep. From the point of view of highway safety engineers, this
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crash rate change due only to a change in exposure should
regarded as an improvement in the site safety because ther
change in the physical characteristics of the site.

Instead, it is helpful to define a new exposure function
transform the traffic volume into an exposure measurefsVd, yield-
ing a linear relationship between crashes and exposure.
implementing the new coordinate, the safety performance
tion becomes linear and each point on the line has the same
representing a normalized crash rate that is constant for all
of exposure at the same location. This newly defined crash
pensity, or safety index, is therefore more meaningful for ma
comparisons among different entities with different exposures
safety performance functions.

In keeping with the nonlinear relationship for the safety
formance function, we use an exponential form for estima
safety indices for each crash typerik as follows:

mik = hikrik s1d

wheremik=expected number of crashes for crash typek at seg
ment i; hik=computed exposure function at segmenti for crash
typek; andrik=normalized crash rate for crash typek at segmen
i, also defined as the safety index.

Further, we define functions forhik andrik as follows:

hik = hksVi,Lid = Vi
aVkLi

aLk s2d

and

rik = expsX ibd s3d

where Vi =AADT at segment i; Li =length of segmenti; X i

=vector of road characteristics for segmenti; andb=entire vecto
of parameters to be estimated for crash typek.

Fig. 2 shows the resulting safety performance function
crash typek at segmenti as a straight line with slope equal to
safety indexrik.

Data Collection and Processing

We gathered records of traffic counts and crash incidence~by
type! from the Highway Safety Information System~HSIS! data-
base maintained by the Federal Highway Administration~FHWA!
of the United States Department of Transportation. In this s
we include data from four states: Michigan, California, Wash
ton, and Illinois; summary statistics are listed in Table 1.
would be expected for rural road segments, more than half o
crashes are of the single-vehicle type. Opposite direction cr
are the least represented. The average speed limit is a
80 km/h s50 mphd, with a maximum of 104 km/hs65 mphd, in-

Fig. 2. Normalized safety performance function
dicating that there is not a great deal of variation among states.
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There is, however, considerable variation in the pavement w
although it is mostly due to the differences in shoulder wi
There is a wide range in segment lengths, although most seg
appear to be less than 1.6 km~1 mile! in length; consequently it
vital that the models account for differences in length from
segment to another. Moreover, the number of years for the
segments is different for each state. Michigan and California
5 years of data from 1993 to 1997. Illinois has 3 years of
corresponding to 1991, 1992, and 1994. Washington has 4
of data from 1993 to 1996.

The data for each state were available in two separate
bases: one containing information about each crash, and th
ond containing information about each highway segment. Co
quently, it was necessary to process the data into a diff
format before they could be used for estimating statistical mo
This required linking the accident and highway inventory d
bases, filtering out observations with missing or illogical va
from each database~such an AADT or segment length of 0!,
translating the given accident type variables into a new var
that matches our definition, and finally aggregating the mul
cases for each accident into a single case for each segmen
accident counts and AADTs by year.

Methodology

In this section, we describe the zero-inflated-Poisson~ZIP! re-
gression model under the hierarchical Bayesian framewor
the crash data. The following section presents the detai
the model structure, the while the “Bayesian Approach for In
ence” section describes the Bayesian approach for estimatio
inference.

Zero-Inflated-Poisson Crash Prediction Model

While previous studies have provided insight into the factors
termining crash frequencies, it is important to realize that tr
tional application of the Poisson or negative binomial distribu
alone does not address the possibility that more than one u
lying process may be influencing crash frequencies~Miaou and
Lum 1993!. For instance, if the study segments are collected
domly, a preponderance of zero-crash observations will appe
the data because crashes are rare events. This over-represe
of zero-crash observations in the data may erroneously su
overdispersion in the data even though the Poisson distribut

Table 1. Variable Definitions and Summary Statistics for Four State

Variablea

Michigan California

Minimum Maximum Mean Minimum Maximum

SV 0 61 0.68 0 29

SD 0 23 0.15 0 22

OD 0 7 0.04 0 11

ID 0 23 0.08 0 15

L ~m! 16 12,585 998 2 9,640

V ~1000s! 0.24 40 5.45 0.05 28

W ~m! 6 13 12 6 15

S ~kph! 40 89 85 40 105

Note: SV5single vehicle crashes; SD5multivehicle same direction cra
direction crashes;L5segment length~m!; V=annual average daily traf
a~km/h!
actually otherwise correct. To account for the large probability

JOURNA
-

n
t

“spike” at zero,Pi is used to represent the additional probab
of segmenti to have no crashes while 1−Pi represents the pro
ability that segmenti follows the Poisson distribution. Assumi
a Poisson distribution, the probability that a segment will hav
crashes~apart from the additional spike! is e−mi. The total prob
ability of observing zero crashes consists of mixing these
probabilities together. The entire distribution is called the
distribution with the following probability density function~Lam-
bert 1992!:

PsNid = 5Pi + s1 − Pide−mi sNi = 0d

s1 − Pid
e−mimi

Ni

Ni!
sotherwised 6 s4d

wherePsNid=probability thatNi crashes occur on segmenti, as-
suming values 0,1,2,…; Pi =zero-inflated probability on segme
i; andmi =expected number of crashes at segmenti.

In the framework of generalized linear models, a link func
is employed to connect the mean number of crashes with re
covariates. As defined previously

mi = hsVi,LideX ib s5d

which implies a log-linear link function. As for the ZIPPi at
segmenti, we use a logit function as follows:

log itsPid = logS Pi

1 − Pi
D = Gig s6d

whereGi =vector of covariates expected to influence the valu
Pi; andg=vector of coefficients of the covariatesGi.

The likelihood function of the parameters is maximized
order to estimate all the unknown coefficients given datan
sites, and is

Lsb,guNd = p
i=0

n

fPi + s1 − Pide−migs1 − Pid
e−mimi

Ni

Ni!
s7d

We use the covariate vectorX i and Gi along with the exposu
function ofn andL for predicting bothP andm. Recall that eac
P, N, n, andm are indexed onk; these indices are omitted here
brevity.

Eq. ~7! is not a closed form and cannot be solved easil
solution is possible by the introduction of an auxiliary varia

Washington Illinois

an Minimum Maximum Mean Minimum Maximum M

61 0 20 0.32 0 30 0.

.2 0 10 0.1 0 28 0.

08 0 4 0.05 0 4 0.0

8 0 7 0.04 0 20 0.0

22 16 10,267 177 16 14,194

.05 0.05 24 2.39 0.26 25.7 5

0 5 15 9 5 15 10

7 48 105 84 40 97 7

OD5multivehicle opposite direction crashes; ID5multivehicle intersectin
00s of vehicles!; W5pavement width~m!; andS5speed limit.
s

Me

0.

0

0.

0.2

3

3

1

8

shes;
fic~in 10
~latent variable! Z in the likelihood function; here
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Zsid = 51 If Ni is from the zero-inflated state

0 If Ni is from the nonzero-inflated

sPoisson distributiond state
6

The procedure of introducing an auxiliary variable into the l
lihood function is called data augmentation~Tanner 1993!. All
data augmentation algorithms share a common approach to
lems: rather than performing a complicated maximization
simulation, one augments the observed data with latent da
simplify the calculation. Now the log-likelihood function with t
complete datasN,Zd would be~Lambert 1992!

LLsg,b;N,Zd = o
i=1

n

hZiGig − logf1 + expsGigdgj + o
i=1

n

s1 − Zid

3hfNiX ib − expsX ibdg − logsNi!dj s8d

Numerical maximization for obtaining the maximum like
hood estimates of the model parameters is done using sof
such asSPLUS~Mathsoft 1995!.

Bayesian Approach for Inference

In this section, we describe a fully Bayesian framework for m
eling and inference. The Bayesian framework enables the mo
to specify a prior distribution that represents the best guess
the parameters before incorporating information from the dat
general, given data and model parameters, the Bayesian
specification requires a likelihood function and a prior distr
tion, from which, by Bayes’ theorem, we obtain the poste
density of the parameters given the data as being proportio
the product of the likelihood and the prior~up to a normalizing
constant!. The advantage of this approach over the empi
Bayesian approach is that it takes into account the uncer
associated with the estimates of the parameters and can p
exact measures of uncertainty. The Empirical Bayesian~EB! es-
timate of the individual site is based on the assumption tha
mean and the variance of the control group are both estim
without errors, which is not true in practice~Miaou and Lord
2003!. It also facilitates extensive predictive analysis through
use of numerical summary statistics and graphical displays,
as histograms and density plots for estimated parameter
functions of these parameters.

Review of Sampling Based Bayesian Framework
In some situations, such as under a conjugate prior setup, co
tation of the posterior and resulting inference is easy, but in
eral it can be difficult, if not impossible to obtain analytical for
for the joint posterior and related quantities. Numerical inte
tion may be less efficient and may also be difficult to implem
in high dimensions. In the last decade, sampling-based me
have gained popularity for Bayesian inference in a variet
problems, their attractiveness being their conceptual simp
and ease of implementation.

In particular, the Gibbs sampler is a Markovian upda
scheme, which requires sampling from the complete condit
distributions associated with the parameter vectoru=sb ,gd. A
key point is that each complete conditional density is also pro
tional to the joint posterior. In certain cases, the form corresp
to a standard distribution, while in others it emerges only
nonstandard, non-normalized density. The customary Gibbs
pler proceeds by making draws from the complete conditi

distribution in some systematic order. The Metropolis algorithm is
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employed when the complete conditional distributions are
easily identified in standard forms~Tanner 1993!. This algorithm
creates a sequence of random points, whose distribution
verges to the target posterior distribution. The final samples
the posterior are obtained after monitoring convergence.

Hierarchical Bayesian Model Fitting
As we will see, a useful offshoot of the sampling based Baye
framework for modeling crashes is that it enables us to m
inferences about functions of parameters~such as differences b
tween parameters! effortlessly, as we describe later. We fit a h
archical fully Bayesian model using Markov chain Monte C
~MCMC! algorithms; in particular, we employ the Metropolis
gorithm.

Eq. ~7! is used within a hierarchical Bayesian modeling fra
work using MCMC methods for making inferences onb andg.
The advantage of this approach over the empirical Bayesia
proach is that it provides the entire posterior distributions o
model parameters, permitting a wide range of inference be
just the first few moments. The updated uncertainty abou
value of these parameters is expressed as posterior distributi
follows:

Psb,guN,Zd ~ Lsb,guN,ZdLsguZdfsb,gd

~ Lsb,guN,ZdLsguZdf1sbdf2sgd s9d

where Psb ,g uN,Zd=posterior distribution for all the unknow
coefficients given the complete data setsN,Zd; Lsb ,g uN,Zd
=likelihood function for all the unknown coefficients given
complete data setsN,Zd; the same as in Eq.~8!; Lsg uZd
=likelihood function of unknown coefficientsg given Z; and
fsb ,gd=joint prior distribution of unknown coefficientssb ,gd.
Because the coefficientsb andg are independent, their joint pri
distribution is the product of their individual distributionsf1sbd
andf2sgd, f1sbd is the prior distribution of unknown coefficien
b, andf2sgd is the prior distribution of unknown coefficientsg.

The Bayesian framework also provides for specifying a p
distribution that represents the best guess about the parame
this case, we do not have sufficient knowledge of the dist
tion for individual parameters on the risk factors and spec
diffuse prior distribution, which implies a vague specification
f1 andf2

b , normalsb̂,s2I q1
d

and s10d

g , normalsĝ,s2I q2
d

where b̂ and ĝ=initial values decided by experience. In t
study, they are estimators from the previous ZIP processs2

=very large number andIN=identity q3q matrix, and q
=number of covariates.

Again, the indices are omitted for brevity. Once we obtain
posterior distributions for these parameters, we can easily
struct any summary information of interest, such as the m
median, or credible intervals. Since the posterior distributio
complicated and cannot be obtained in closed form, we
MCMC algorithms to effectively simulate from the posterior.
an example, for the coefficients vectorb, the idea of the MCMC
is to simulate a random move in the space of the unknown
rametersb, which converge to a stationary distribution that is

joint posterior distributionPsb uNd. The Metropolis algorithm is
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MCMC simulation method that is useful for drawing samp
from a posterior distribution that is not available in a stand
form. The Metropolis algorithm creates a sequence of ran
points b1,b2, . . . ,bi whose distribution converges to the tar
posterior distribution~Tanner 1993; Gelman et al. 1995!.

In particular, the Metropolis algorithm proceeds as follo
The following steps have been programmed inVisual Fortran6,
using the related IMSL library. Note thatu=sb ,gd in this
narrative.
1. Initialization, l =0: Obtain an initial valueu0, for which

Psu uNd.0, from an initial distributionP0sud. In our study
the data set is too large forS-Plus to handle. In order t
obtain reasonable initial values, we computed the maxim
likelihood estimate~MLE! of u from a random 1/3 samp
of the entire data set usingS-Plus to fit a ZIP regressio
model. These estimates constitute initial values for the
pler.

2. Recall that the complete conditional distribution ofu does
not have a closed form. We generate a sample at thlth
iteration using a Metropolis scheme, via a suitable prop
density. That is, at thelth iteration, we sample a candida
point ul* from a proposal densityflsul uul−1d, which is sym-
metric.@Note that the proposal distribution is said to be s
metric if flsul uul−1d=flsul−1uuld for all ul, ul−1, and for alll.
Our transition distribution is a multivariate normal distrib
tion centered atul−1, and is symmetric.#

3. The criterion for deciding whether or not to accept the
didate generate from the proposal, viz.,ul, is based on th
following procedure about the ratio of the posterior for
currentul andul−1.

ul = 5ul with the probability minH PsuluNd
Psul−1uNd

,1J
ul−1 otherwise

6 s11d

4. Go back to step 2, and repeat the same procedure witl = l
+1. ~Remark: if we accept the candidate valueul and the
Markov chain moves to it, the distributionf is now centere
at ul. Otherwise, the distributionf is still centered at th
previous iterationul−1.!

5. The chain must be run for several iterations, and
vergence monitored using Bayesian output ana
~BOA 2002!. After many iterations, a series of valu
u1,u2, . . . ,ul , . . . converge to the posterior distribution in
end ~BOA 2002!.

Crash Prediction Modeling

The crash model includes year dummies to account for tim
fects on the intercept along with segment characteristics su
speed limit and highway cross-sectional width. We expect tha
models will provide information about how the two contribut
road characteristics, AADT, and segment length, affect expo
We propose a prediction model via a log link for the mean n
ber of crashes

lnsmd = intercept +bYsDYd + bV lnsVd + bL lnsLd + bWW+ bSS

s12d

whereDY=vector of dummy variables for year effects;V denotes
the covariate AADT;L denotes the segment length;W denotes th
pavement width;S denotes the speed limit; and the regres

coefficientsb are subscripted to be self-explanatory.

JOURNA
Analysis of Variance Test

In order to compare the state and crash type effects on the
sure factors AADT and segment length, a two way ANOVA
sign is applied to test the exponents of AADT and segment le
There are two null hypotheses: the first assumes that there
regional~state! effect on the exposure functions; the second
there is no crash type effect on the exposure functions

bi j = C + sasdi + sacd j + «i j s13d

where bi j =estimated exponents for either AADT or segm
length; C=overall mean; sasdi =regional effect ~state! where
i =1,4 representing four different states;sacd j =crash type ef
fect where j =1,4 representing four different crash types;
«i j =random error following the normality and equal varia
assumption.

Analysis and Results

Estimation Results

The Bayesian algorithm requires an initial value for each pa
eter before beginning the Metropolis sampling iterations. The
teria for selecting these initial values is arbitrary with respe
the algorithm, but the actual values used have a strong influ
on the fast convergence of the iteration results. Therefore
have chosen maximum likelihood estimators from the ZIP m
as our initial values. After starting with these initial param
estimates, the Metropolis algorithm provided posterior distr
tions for each parameter and each crash type. Table 2 show
mean for eachb parameter estimated by crash type and by s
Because the parameter vector ofg helps to predict the possibili
for sites without crashes, which is an intermediate product an
of direct interest to us, these values are omitted here for br
As can be seen, the resulting parameter distributions vary g
from one crash type to another, validating our hypothesis t
single response variable could lead to unreliable conclusio
notable result is that the exponent onV, the traffic volume param
eter, indeed varies markedly with crash type, and is lowes
single-vehicle~SV! crashes. This implies that the marginal
crash rate is higher at low traffic volumes and lower at high tr
volumes; as volume increases, this crash type becomes less
This is a reasonable result; the more common presence of
vehicles on the road offers more opportunities for multiveh
crashes rather than single vehicle crashes. Also, the lower
ginal single vehicle crash rate at high traffic volumes may be
to drivers being more attentive and cautious when more veh
are around. For multivehicle crashes, the exponents on AAD
almost all greater than 1.0, with means of more than 1.40
same direction~SD! crashes, slightly above 1.0 for opposite
rection ~OD! crashes, and around 1.0 for intersecting direc
~ID! crashes. This complements the finding for single veh
crashes: the marginal crash rate is lower at low traffic volu
and higher at high traffic volumes. In any case, it seems clea
this exponent on AADT differs substantially from one crash
to another, confirming our study design.

The nonlinear relationship between crash counts and A
challenges the traditional way of computing crash rate whic
the rate of crash frequency and AADT with the assumption
crash is linear to the AADT. However, our study shows that
nonlinear relationship may be due to many reasons such a
interactive effects between different crash types like si

vehicle and multivehicle crashes; missing information such as
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9.283

.196

.868

.326

.806

.020

.005

6.485

.047

.145

.948

.429

.020

.018

;

intersecting traffic volume; the confounding factors like dr
behaviors and so on. Some of the issues are out of control
traffic agencies and researchers. Hence, successfully usin
available data resource will require a unique approach for re
ciling missing or unavailable factors. Using the nonlinear r
tionship between the crash count and volume provides mea
ful output for the safety model without losing its accuracy.

The other component of exposure, segment length, also e
its variation by crash type, though to a lesser extent. The exp
on segment length is essentially close to 1.0 for SV crashe
entirely intuitive result analogous to the vehicle-miles expo
measure commonly used now, while it is significantly lower t
1.0 for the multiple vehicle crashes. Finding different coeffici
for AADT and segment length for each crash type shows tha
two factors must be addressed separately when accountin
exposure to crashes.

In the two-way ANOVA test, in order to compare the state
crash type effects on the exposure factors AADT and seg
length, a two way ANOVA design is applied to test the expon
of AADT and segment length. There are two null hypotheses
first assumes that there is no regional~state! effect on the expo
sure functions; the second that there is no crash type effect o
exposure functions. In order to meet the ANOVA normality
equal variance assumption, we use a natural log transform
for the data. Note that the independence assumption o
ANOVA is not valid here; the results are to be interpreted in
nature of exploratory analysis. Table 3 displays the two-
ANOVA results for regional effect and crash type effect on
AADT in the prediction model.

Thep value for the crash type factor rejects the null hypoth
that there is no crash type effect on the exponents on AADT
5% level of significance. However, we are not able to rejec

Table 2. Posterior Mean Parameters for Regression Model 3

Variable

SV

MI CA WA

Intercent −2.294 −3.578 −5.124

DY1 0.040 0.113 0.070

DY2 0.182 0.107 0.073

DY3 0.150 0.010 0.076

DY4 0.090 0.029 —

LnsVd 0.397 0.685 0.788

LnsLd 0.908 0.838 0.716

W 0.007 −0.025 −0.015

S 0.002 −0.020 −0.008

SD

MI CA WA

Intercent −3.449 −4.542 −5.861

DY1 −0.098 0.090 0.067

DY2 −0.029 0.098 0.067

DY3 −0.046 −0.048 0.077

DY4 −0.153 0.059 —

LnsVd 1.422 1.263 1.000

LnsLd 0.701 0.704 0.615

W −0.023 −0.007 −0.016

S −0.030 −0.028 −0.008

Note: SV5single vehicle; OD5opposite direction; SD5same direction
and IL5Illinois.
hypothesis that there is no significant regional effect on the expo-
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nent on AADT at a 5% significance level. Although it does
indicate we can use pooled data from different states with c
dence, it proves the consistency of the exposure function a
different states and, if the data sample is small, using pooled
data remains an alternative to increase the sample size.

The estimates for the exposure coefficients show the diff
values due to the crash type. However, whether or not sp
levels within crash type are significantly different from each o
is still unclear until a multiple means comparison method is
dertaken. A Tukey multiple means comparison was run in
~SAS 1990! to identify differences by crash type for the expon
on AADT. Keeping in mind that this procedure requires the s
assumptions as the ANOVA procedure, we observe that si
cant differences exist between the exponents on volume for m
vehicle opposite direction or same direction crashes and s
vehicle crashes and there is no significant difference betwee
exponents on volume for single vehicle and multi-vehicle in
secting direction crashes~see Table 4!. The reason the expone
for single vehicle crashes is not significantly different from
for intersecting direction multivehicle crashes may be du
unincluded effects in the crash prediction model for interse
direction crashes, such as driveway or minor intersecting
volumes.

OD

MI CA WA IL

121 −4.544 −5.460 −6.554 −

83 −0.385 −0.079 −0.237 −0

02 −0.215 −0.110 −0.261 −0

−0.077 −0.261 −0.117 —

−0.264 −0.122 — —

95 1.203 1.091 0.944 1

99 0.780 0.851 0.681 0

04 −0.036 −0.028 −0.010 −0

04 −0.023 −0.030 −0.005 0

ID

MI CA WA IL

596 −3.137 −3.802 −5.231 −

23 −0.257 −0.144 −0.860 −0

99 −0.154 −0.093 −0.887 −0

−0.163 −0.033 −0.814 —

−0.085 0.041 — —

40 1.123 0.915 0.877 0

28 0.568 0.642 0.615 0

05 −0.030 −0.001 −0.010 0

18 −0.026 −0.021 −0.010 −0

tersecting direction; MI5Michigan; CA5California; WA5Washington

Table 3. Analysis of Variance Table for Effects on Exponents onV

Source DF Mean square F value p value

Crash type 3 0.39 7.95 0.0067

State effect 3 0.046 0.96 0.4545

Error 9 0.049 — —

Total 15 — — —
IL

−6.

−0.0

−0.2

—

—

0.7

0.6

0.0

−0.0

IL

−7.

0.1

0.0

—

—

1.7

0.5

−0.0

−0.0

; ID5in
Note: DF5degree of freedom.
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The resulting exponents on segment length rank upw
from ID, SD, OD, to SV. Moreover, the test results show that
exponents on ID and SD differ significantly from those on SV
OD, demonstrating that there are important explanatory fa
left out of the model that correlate with segment length. Th
findings are reasonable, because the segment length has les
on the ID and SD crashes which are closely related to the nu
of driveways along the segment rather than the length o
segment, while OD and SV crashes are more likely to be re
to the length of the segment, and have exponents close to 1
other words, segment length may be confounded with unincl
factors such as driveways and minor intersections along the
ments.

The parameters on the crash rate covariates speed lim
total pavement width do vary significantly by state. Some sh
positive relationship with the number of crashes, while ot
show negative relationships even for the same crash type
coefficients on speed limit are negative for most crash types.
is expected, and is usually because the roads with higher
limits have safer designs, or because the speed limit has
reduced for road sections found to be unsafe. The positive
ficient on pavement width for single vehicle crashes in s
states, however, is entirely unexpected because this coeffic
negative for almost all multivehicle crashes. Intuitively,
would expect a wider pavement to give drivers more maneuv
room and reduce the likelihood of running off road or collid
with another vehicle. A possible explanation is that the gre
pavement width creates a road setting that encourages h
speeds than are actually appropriate for the actual geometric
ditions, thus placing drivers in situations where their speed i
great to react safely to unexpected stimuli.

Conclusion

We describe here an investigation into the relationship bet
crashes and traffic volume~AADT ! on rural two-lane highwa
segments in four states in the United States. Hierarchical B
sian modeling was used in a zero-inflated Poisson framewo
generate posterior distributions for parameter values. The fin
show that the relationship between crashes and traffic volu
indeed nonlinear for each of the four crash types exam
single-vehicle, and multivehicle same direction, opposite d
tion, and intersecting direction. In particular, the relationship
single-vehicle crashes results in the marginal crash rate de
ing with traffic volume, while the opposite was observed for
three multivehicle crash types. The exponents for traffic vol
and segment length are different, which casts doubt on the
of vehicle miles traveled~VMT ! with the same exponents
AADT and segment length. Furthermore, two-way ANOVA

Table 4. Tukey Test for Exponents onV andL for Different Crash Type

Crash types Va La

SV A A

ID A B B

OD B A

SD B B

Note: SV5single vehicle; ID5intersection direction; OD5opposite di
rection; and SD5same direction.
aLevel indicated by the same letter code is not significantly different
each other.
tested for exponents on AADT and segment length with crash

JOURNA
ct

-

type and regional~states! factors. The ANOVA outputs demo
strate the necessity of disaggregating the crashes by type, b
not able to reject the hypothesis that each state has differe
ponents. In other words, there is no significant difference fo
posure functions from state to state. The nonlinear relation
between crash frequency and segment length indicates th
models omit important explanatory factors that are likely to
correlated with the segment length. The differences in the e
nent on segment length among crash types revealed b
ANOVA and Tukey’s test suggest that these factors could b
lated to intersecting volumes, for example the number of d
ways or minor intersections along the segment. The autho
not recommend using these exponents on segment length fo
dicting crashes on segments other than from the popu
sampled; as with any other statistical estimating exercise, fin
must be recalibrated before being applied to other populatio

Related research by the authors has investigated a more
gregate model accounting for temporal effects as well as
type. Furthermore, the exposure factors includes hourly flow
by direction rather than AADT. New modeling techniques
employed to explore the relationship between number of cra
and exposure function using hourly flow rate and segment le
at a disaggregate level.
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