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Abstract: A critical part of any risk assessment is identifying how to represent exposure to the risk involved. Recent research shows that
the relationship between crash count and traffic volume is nonlinear; consequently, a simple crash rate computed as the ratio of crash cou
to volume is not suitable for comparing the safety of sites with different traffic volumes. To solve this problem, we describe a new
approach for relating traffic volume and crash incidence. Specifically, we disaggregate crashes into foufxygegle-vehicle,(2)
multivehicle same direction3) multivehicle opposite direction, an@) multivehicle intersecting, and then define candidate exposure
measures for eacfas a function of site traffic volumgshat we hypothesize will be linear with respect to each crash type. This article
describes investigation using crash and physical characteristics data for highway segments from Michigan, California, Washington, an
lllinois obtained from the Highway Safety Information System. We have used a hierarchical Bayesian framework to fit zero-inflated-
Poisson regression models for predicting counts for each of the above crash types as a function of the daily volume, segment length, spe
limit and lane/shoulder width using Markov Chain Monte Carlo methods. We found that the relationship between crashes and the daily
volume is nonlinear and varies by crash type, and is significantly different from the relationship between crashes and segment length fo
all crash types. Significant differences in exposure functions by crash type are proven using analysis of variance and Tukey tests.
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Introduction This concept of exposure was introduced to highway safety
analysis through the definition of the crash rate—the number of
A critical part of any risk assessment is identifying the appropri- crashes divided by the number of million vehicle-miles traveled
ate measure of exposure to the risk in question. It is useful to cast(VMT). The development of this approach was important for
the crash prediction problem by defining number of crashes to beidentifying truly hazardous locations, as opposed to locations with
the product of exposure to the risk and the risk of a crash in which high volumes but a low number of crashes per vehicle. However,
vehicles may be involved. However, only the number of crashes a shortcoming of this approach is that it assumes a linear relation-
is an observable value, as neither risk nor exposure to risk isship between the number of crashes and the VMT. In fact, this
self-explanatory, and each is dependent on how the other is develationship may not be simply linear, and arbitrarily assuming
fined. Therefore, evaluating safety between different travel linearity may weaken the accuracy of the crash count prediction.
modes, or comparing site crash risks is somewhat arbitrary andAs an alternative, Hauer introduced the concept of safety perfor-
varies by how one defines exposure. mance functions to generalize the representation of exposure as a
non-linear function of the traffic voluméHauer 1995, this con-
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collision depends on the occasions when vehicles cross paths,
meet or follow one another. For example, given the same AADT,
the risk for a same-direction vehicle crash may be different from
that for an opposite-direction crash; this is a result of the varying - . . .
number of vehicles in each direction. Therefore, the exposure change in th_e _phy3|cal CharaCt?r'St'CS of the site. .
measure is necessarily dependent on crash type and an analysis of Instead, it is helpful to Qeflne a new exposure fuqct|on to
variance(ANOVA) test is proposed with the null hypothesis that transform the traffic volume into an exposure meas(e®, yield-

the exposure function is the same for all the crash types. Further-"9 Ia Ilnetgr r(terl]atlonsmp bztwe;an tc;]rashefs and ;exposure. fAfter
more, a Tukey test will be employed to investigate the variation Implementing the new coordinate, the safety performance func-

within the crash types. tion becomes linear and each point on the line has the same slope,

The problem of accurately modeling the true risk of crashes representing a normalized crash rate that is constant for all levels
occurring at a highway location is further exacerbated by over- of exposure at th_e same location. This newly d_eflned crash pro-
dispersion and the regression-to-mean effect. This effect has beeRENSIty, O safety index, is therefore more meaningful for making

well documented by many, especially Hauer, who derived an em_comparisons among different entities with different exposures and

pirical Bayesian approach for estimating the true mean crash ratesafety perfp rmance functlon_s. . .
In keeping with the nonlinear relationship for the safety per-

for a location (Hauer 1997. Tunaru improved upon Hauer’s ¢ functi tial f ¢ imati
method, using a hierarchical Bayesian generalized linear model- ormance function, we use an exponential form for estimating
safety indices for each crash typg as follows:

ing approach for multiple crash responses at a locafiamaru

1999. These two landmark research efforts provide welcome ex- Wik = MikPik (1)

amples of how to more accurately evaluate highway safety, yet

they both still compute crash rates using VMT. whert_e Lik=expected number of crashgs for crash_typm seg-
Extending these ideas, this paper describes investigation intoMenti; mi=computed exposure function at segmefor crash

using hierarchical Bayesian modeling to estimate safety perfor- YP€K; andpy=normalized crash rate for crash tybat segment

mance functions that best represent the risk of exposure to four» /S0 defined as the safety index.

different types of highway crasii) single vehicle(2) multive- Further, we define functions fafy andpj as follows:

hicle same _dlrectlon(3_) mL_lIt|ve_h|cIe intersecting direction, aqd_ ik = Mi(Vi L) = VeV 0tk )

(4) multivehicle opposite direction. To focus the study, analysis is

confined to two-lane rural highway segments in four United and

States states: Michigan, California, Washington, and lllinois. = expXiB) 3)

Moreover, different prediction model forms are tested with time Pik :

effects, the interactions between time and AADT, the interaction where V;=AADT at segmenti; L;=length of segment; X;,

between time and segment length and the linear relationship be=vector of road characteristics for segmerand =entire vector

tween exposure measures and segment length. The models aref parameters to be estimated for crash tipe

estimated separately for each state to show both model consis- Fig. 2 shows the resulting safety performance function for

tency and differences among states using an ANOVA test with the crash typek at segment as a straight line with slope equal to the

null hypothesis that for the same crash type, there is no regionalsafety indexp;.

(state effect on exposure functions.

crash rate change due only to a change in exposure should not be
regarded as an improvement in the site safety because there is no

Data Collection and Processing
Safety Study Design

We gathered records of traffic counts and crash incidebge
Fig. 1 depicts a hypothetical nonlinear safety performance func- type) from the Highway Safety Information SystefiHSIS) data-
tion for a highway segment. For any point on the safety perfor- base maintained by the Federal Highway Administratieid WA)
mance function curve, the crash rél¢/ AADT), is defined as the  of the United States Department of Transportation. In this study,
slope of the line joining the origin to that poiiias indicateg we include data from four states: Michigan, California, Washing-
Therefore, if the safety performance function is not a straight line, ton, and lllinois; summary statistics are listed in Table 1. As
the crash rate varies with the amount of the exposure. For ex-would be expected for rural road segments, more than half of the
ample, the number of crashes at Point B is greater than at Point A,crashes are of the single-vehicle type. Opposite direction crashes
but the crash rate at Point B, conversely, is smaller than at Pointare the least represented. The average speed limit is around
A, because the slope of the line joining it to the origin is less 80 km/h (50 mph, with a maximum of 104 km/65 mph, in-
steep. From the point of view of highway safety engineers, this dicating that there is not a great deal of variation among states.
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Table 1. Variable Definitions and Summary Statistics for Four States

Michigan California Washington lllinois

Variablé  Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum Mean

SV 0 61 0.68 0 29 0.61 0 20 0.32 0 30 0.27
SD 0 23 0.15 0 22 0.2 0 10 0.1 0 28 0.08
oD 0 7 0.04 0 11 0.08 0 4 0.05 0 4 0.01
ID 0 23 0.08 0 15 0.28 0 7 0.04 0 20 0.04
L (m) 16 12,585 998 2 9,640 322 16 10,267 177 16 14,194 193
V (10003 0.24 40 5.45 0.05 28 3.05 0.05 24 2.39 0.26 25.7 5.45
W (m) 6 13 12 6 15 10 5 15 9 5 15 10

S (kph) 40 89 85 40 105 87 48 105 84 40 97 77

Note: SV=single vehicle crashes; SBmultivehicle same direction crashes; ©&bhultivehicle opposite direction crashes;=+multivehicle intersecting
direction crashed;=segment lengtlim); V=annual average daily traffign 1000s of vehicles W=pavement widthim); and S=speed limit.

Akm/h)

There is, however, considerable variation in the pavement width, “spike” at zero,P; is used to represent the additional probability
although it is mostly due to the differences in shoulder width. of segmeni to have no crashes while P represents the prob-
There is a wide range in segment lengths, although most segmentsbility that segment follows the Poisson distribution. Assuming
appear to be less than 1.6 Kinmile) in length; consequently itis  a Poisson distribution, the probability that a segment will have no
vital that the models account for differences in length from one crashegapart from the additional spikés e*i. The total prob-
segment to another. Moreover, the number of years for the studyability of observing zero crashes consists of mixing these two
segments is different for each state. Michigan and California have probabilities together. The entire distribution is called the ZIP
5 years of data from 1993 to 1997. lllinois has 3 years of data distribution with the following probability density functiaih.am-
corresponding to 1991, 1992, and 1994. Washington has 4 yeardert 1992:

of data from 1993 to 1996.

The data for each state were available in two separate data- P.+(1-P)e™ (N;=0)
bases: one containing information about each crash, and the sec- P(N)) = iy M @
ond containing information about each highway segment. Conse- v (1-P) N'LI’“‘ (otherwise

quently, it was necessary to process the data into a different it
format before they could be used for estimating statistical models.
This required linking the accident and highway inventory data-
bases, filtering out observations with missing or illogical values
from each databaséuch an AADT or segment length of),0
translating the given _a(_:(_:|dent typf_e variables |ntq anew varlgble is employed to connect the mean number of crashes with related
that matches our definition, and finally aggregating the multiple : : .

. ) . .. covariates. As defined previously
cases for each accident into a single case for each segment, with
accident counts and AADTs by year.

where P(N;) =probability thatN; crashes occur on segmentas-
suming values 0,1,2,; P;=zero-inflated probability on segment
i; and w;=expected number of crashes at segnient

In the framework of generalized linear models, a link function

i =m(V;,L)elP )

which implies a log-linear link function. As for the ZIP; at
Methodology segmeni, we use a logit function as follows:

In this section, we describe the zero-inflated-Pois&oif) re- P.
gression model under the hierarchical Bayesian framework for log it(Pi):Iog<—'> =Gy (6)
the crash data. The following section presents the details of 1-p

the n’1’odel .stru((j:turezbthe Vr‘]’h'le the f‘BayeS|an Aﬁﬁ)roach‘ for .Infer- hereG;=vector of covariates expected to influence the value of
ence” section describes the Bayesian approach for estimation an .+ andy =vector of coefficients of the covariat.

inference. The likelihood function of the parameters is maximized in
order to estimate all the unknown coefficients given data at
Zero-Inflated-Poisson Crash Prediction Model sites, and is

While previous studies have provided insight into the factors de-
termining crash frequencies, it is important to realize that tradi-
tional application of the Poisson or negative binomial distribution
alone does not address the possibility that more than one under-
lying process may be influencing crash frequen¢M&ou and We use the covariate vectot; and G; along with the exposure
Lum 1993. For instance, if the study segments are collected ran- function of v andL for predicting bothP and .. Recall that each
domly, a preponderance of zero-crash observations will appear inP, N, v, andu. are indexed ofk; these indices are omitted here for
the data because crashes are rare events. This over-representatitmevity.

of zero-crash observations in the data may erroneously suggest Eg. (7) is not a closed form and cannot be solved easily. A
overdispersion in the data even though the Poisson distribution issolution is possible by the introduction of an auxiliary variable
actually otherwise correct. To account for the large probability (latent variablg¢ Z in the likelihood function; here

e tip

TR

L@.IN =TT [P+ -P)e™]2-P)
i=0
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1 If N, is from the zero-inflated state employed when the complete conditional distributions are not

easily identified in standard form@anner 1998 This algorithm

. o creates a sequence of random points, whose distribution con-
(Poisson distributionstate verges to the target posterior distribution. The final samples from

the posterior are obtained after monitoring convergence.

Z(i)=10 If N; is from the nonzero-inflated

The procedure of introducing an auxiliary variable into the like-
lihood function is called data augmentatiéfianner 1993 All ) ) . .
data augmentation algorithms share a common approach to probtierarchical Bayesian Model Fitting _ _

lems: rather than performing a complicated maximization or As we will see, a useful offshoot of the sampling based Bayesian

simulation, one augments the observed data with latent data tol@mework for modeling crashes is that it enables us to make

simplify the calculation. Now the log-likelihood function with the inferences about functions of paramet¢ssch as differences be-

complete datdN,Z) would be(Lambert 1992 twee_n paramete}seff_ortlessly, as we describe Iate_r. We fit a hier-
archical fully Bayesian model using Markov chain Monte Carlo
n n (MCMC) algorithms; in particular, we employ the Metropolis al-

LL(v,B;iN,2) = 2 {ZGyy ~log[1 + expGiy) ]} + 2 (1~ Z) gorithm.

Eq. (7) is used within a hierarchical Bayesian modeling frame-
work using MCMC methods for making inferences prandy.
X{INXiB — exp(X;iB)] - log(N;!)} 8) The advantage of this approach over the empirical Bayesian ap-
Numerical maximization for obtaining the maximum likeli- proach is that it provides the entire posterior distributions of the

hood estimates of the model parameters is done using softwargnodel parameters, permitting a wide range of inference beyond
such asSPLUS(Mathsoft 1995. just the first few moments. The updated uncertainty about the

value of these parameters is expressed as posterior distributions as
follows:

i=1 i=1

Bayesian Approach for Inference

In this section, we describe a fully Bayesian framework for mod- P(B.YIN.2) = L(B,¥IN.2L(+[2)b (B.7)

eling and inference. The Bayesian framework enables the modeler = L(B,¥IN,Z2)L(Y|Z)b1(B) dbo(y) C)
to specify a prior dlstrlputlon that.rep'resents Fhe best guess abOUtwhere P(B,v|N,2)=posterior distribution for all the unknown
the parameters before incorporating information from the data. In oefficients given the complete data s&(,2): L(B,y|N,2)
general, given data and model parameters, the Bayesian mode‘l_:l.k lihood fg tion f I tﬁ K ’ ff'. . tly' ' th
specification requires a likelihood function and a prior distribu- (:olmeplle?eo d;tgc ;%?Noéﬁ thee :gmr;ov;r; ci(r)]e ézl(eé;s E](I;T;) €
tion, from which, by Bayes’ theorem, we obtain the posterior . ’

density of the parameters given the data as being proportional tO:IikeIihood function of unknown coefficienty given Z; and
the product of the likelihood and the priéup to a normalizing $(B,y)=joint prior distribution of unknown coefficient§,y).

constant The advantage of this approach over the empirical Because the coefficienfsand+y are independent, their joint prior
e ?hat ok pir'fto o e uncgrtaim distribution is the product of their individual distributioks ()

yes pp . .yandcbz(y), &1(B) is the prior distribution of unknown coefficients
associated with the estimates of the parameters and can prowd% anddb,(y) is the prior distribution of unknown coefficiers
fmate of the indvidual st 15 based on the assumption that the | 11 BaYesian framework also provides for speciying a prio

. P . distribution that represents the best guess about the parameters. In

mean and the variance of the control group are both eStImatedthis case, we do not have sufficient knowledge of the distribu-
without errors, which is not true in practiogdliaou and Lord '

2003. It also facilitates extensive predictive analysis through the tlpn for |n_d|V|(jua_I pgramete_rs on the risk factors an_d_ speufy a
. L . . diffuse prior distribution, which implies a vague specification for

use of numerical summary statistics and graphical displays, such d

as histograms and density plots for estimated parameters andb 1 andd,

functions of these parameters. B~ norma[ﬁ,ozl 2

Review of Sampling Based Bayesian Framework

In some situations, such as under a conjugate prior setup, compu2nd (10)

tation of the posterior and resulting inference is easy, but in gen-

eral it can be difficult, if not impossible to obtain analytical forms v~ norma[&,azlqz)

for the joint posterior and related quantities. Numerical integra- R

tion may be less efficient and may also be difficult to implement where B and y=initial values decided by experience. In this

in high dimensions. In the last decade, sampling-based methodsstudy, they are estimators from the previous ZIP process.

have gained popularity for Bayesian inference in a variety of =very large number andy=identity qXqg matrix, and q

problems, their attractiveness being their conceptual simplicity =number of covariates.

and ease of implementation. Again, the indices are omitted for brevity. Once we obtain the
In particular, the Gibbs sampler is a Markovian updating posterior distributions for these parameters, we can easily con-

scheme, which requires sampling from the complete conditional struct any summary information of interest, such as the mean,

distributions associated with the parameter ve@er(,y). A median, or credible intervals. Since the posterior distribution is

key point is that each complete conditional density is also propor- complicated and cannot be obtained in closed form, we use

tional to the joint posterior. In certain cases, the form corresponds MCMC algorithms to effectively simulate from the posterior. As

to a standard distribution, while in others it emerges only as a an example, for the coefficients vecr the idea of the MCMC

nonstandard, non-normalized density. The customary Gibbs sam-s to simulate a random move in the space of the unknown pa-

pler proceeds by making draws from the complete conditional rameterg3, which converge to a stationary distribution that is the

distribution in some systematic order. The Metropolis algorithm is joint posterior distributionP(|N). The Metropolis algorithm is
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MCMC simulation method that is useful for drawing samples
from a posterior distribution that is not available in a standard
form. The Metropolis algorithm creates a sequence of random
points p1,B2, ...,B' whose distribution converges to the target
posterior distribution{Tanner 1993; Gelman et al. 1995

In particular, the Metropolis algorithm proceeds as follows.
The following steps have been programmedvisual Fortrang
using the related IMSL library. Note thad=(p,y) in this
narrative.

Analysis of Variance Test

In order to compare the state and crash type effects on the expo-
sure factors AADT and segment length, a two way ANOVA de-
sign is applied to test the exponents of AADT and segment length.
There are two null hypotheses: the first assumes that there is no
regional(state effect on the exposure functions; the second that
there is no crash type effect on the exposure functions

Bij = C+ (ag)i + () + &5 (13

1. Initialization, |=0: Obtain an initial value@®, for which
P(8|N)>0, from an initial distributionPy(@). In our study, ~ where B;;=estimated exponents for either AADT or segment
the data set is too large f@-Plusto handle. In order to  length; C=overall mean;(ay);=regional effect(statg where
obtain reasonable initial values, we computed the maximum i=1,4 representing four different stategy.);=crash type ef-
likelihood estimatg MLE) of @ from a random 1/3 sample  fect wherej=1,4 representing four different crash types; and
of the entire data set using-Plusto fit a ZIP regression  &;=random error following the normality and equal variance
model. These estimates constitute initial values for the sam- assumption.
pler.
2. Recall that the complete conditional distribution ®fdoes Analysis and Results
not have a closed form. We generate a sample atltthe
iteration using a Metropolis scheme, via a suitable proposal S
density. That is, at théth iteration, we sample a candidate EStimation Results
point 8" from a proposal density,(6'|6"™%), which is sym-  The Bayesian algorithm requires an initial value for each param-
metric.[Note that the proposal distribution is said to be sym- eter before beginning the Metropolis sampling iterations. The cri-
metric if &,(6']6'™)=,(6"|6") for all ', 6'~%, and for alll. teria for selecting these initial values is arbitrary with respect to
Our transition distribution is a multivariate normal distribu-  the algorithm, but the actual values used have a strong influence
tion centered 26', and is symmetrig. on the fast convergence of the iteration results. Therefore, we
3. The criterion for deciding whether or not to accept the can- haye chosen maximum likelihood estimators from the ZIP model
didate generate from the proposal, vid', is based on the  ag our initial values. After starting with these initial parameter
following procedure about the ratio of the posterior for the estimates, the Metropolis algorithm provided posterior distribu-
current6' and '™, tions for each parameter and each crash type. Table 2 shows the
| mean for eacls parameter estimated by crash type and by state.
) . ] P(0'|N) Because the parameter vectoryohelps to predict the possibility
0 = 0" with the probability m"{ PO IN) '1} (11) for sites without crashes, which is an intermediate product and not
-1 . of direct interest to us, these values are omitted here for brevity.
0'"" otherwise . S
As can be seen, the resulting parameter distributions vary greatly
4. Go back to step 2, and repeat the same procedurelwith ~ from one crash type to another, validating our hypothesis that a
+1. (Remark: if we accept the candidate valéeand the single response variable could lead to unreliable conclusions. A
Markov chain moves to it, the distributiah is now centered notable result is that the exponent \@nthe traffic volume param-
at 0. Otherwise, the distributionb is still centered at the  eter, indeed varies markedly with crash type, and is lowest for
previous iteratior§'~t.) single-vehicle(SV) crashes. This implies that the marginal SV
5. The chain must be run for several iterations, and con- crash rate is higher at low traffic volumes and lower at high traffic

vergence monitored using Bayesian output analysis
(BOA 2002. After many iterations, a series of values
01,02,....,0',... converge to the posterior distribution in the
end (BOA 2002.

volumes; as volume increases, this crash type becomes less likely.
This is a reasonable result; the more common presence of other
vehicles on the road offers more opportunities for multivehicle
crashes rather than single vehicle crashes. Also, the lower mar-
ginal single vehicle crash rate at high traffic volumes may be due
to drivers being more attentive and cautious when more vehicles
are around. For multivehicle crashes, the exponents on AADT are
The crash model includes year dummies to account for time ef- almost all greater than 1.0, with means of more than 1.40 for
fects on the intercept along with segment characteristics such assame direction(SD) crashes, slightly above 1.0 for opposite di-
speed limit and highway cross-sectional width. We expect that our rection (OD) crashes, and around 1.0 for intersecting direction
models will provide information about how the two contributing (ID) crashes. This complements the finding for single vehicle
road characteristics, AADT, and segment length, affect exposure.crashes: the marginal crash rate is lower at low traffic volumes
We propose a prediction model via a log link for the mean num- and higher at high traffic volumes. In any case, it seems clear that
ber of crashes this exponent on AADT differs substantially from one crash type
to another, confirming our study design.

The nonlinear relationship between crash counts and AADT
challenges the traditional way of computing crash rate which is
the rate of crash frequency and AADT with the assumption that
crash is linear to the AADT. However, our study shows that the
nonlinear relationship may be due to many reasons such as the
interactive effects between different crash types like single
vehicle and multivehicle crashes; missing information such as

Crash Prediction Modeling

In(p) = intercept +3y(Dy) + By IN(V) + B In(L) + BwW + BsS
(12
whereDy=vector of dummy variables for year effeci$denotes
the covariate AADTL denotes the segment lengil;denotes the

pavement width;S denotes the speed limit; and the regression
coefficientsp are subscripted to be self-explanatory.
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Table 2. Posterior Mean Parameters for Regression Model 3

sv oD
Variable MI CA WA IL MI CA WA IL
Intercent -2.294 -3.578 ~5.124 -6.121 -4.544 ~5.460 ~6.554 -9.283
Dy 0.040 0.113 0.070 -0.083 -0.385 ~0.079 -0.237 -0.196
Dyz 0.182 0.107 0.073 -0.202 -0.215 ~0.110 -0.261 -0.868
Dys 0.150 0.010 0.076 — -0.077 -0.261 -0.117 —
Dys 0.090 0.029 — — ~0.264 -0.122 — —
Ln(V) 0.397 0.685 0.788 0.795 1.203 1.091 0.944 1.326
Ln(L) 0.908 0.838 0.716 0.699 0.780 0.851 0.681 0.806
w 0.007 -0.025 -0.015 0.004 -0.036 -0.028 ~0.010 -0.020
S 0.002 ~0.020 ~0.008 -0.004 ~0.023 ~0.030 -0.005 0.005
S ID

MI CA WA IL MI CA WA IL
Intercent -3.449 -4.542 -5.861 ~7.596 -3.137 -3.802 -5.231 -6.485
Dy -0.098 0.090 0.067 0.123 -0.257 ~0.144 -0.860 -0.047
Dyz -0.029 0.098 0.067 0.099 -0.154 ~0.093 -0.887 -0.145
Dy -0.046 -0.048 0.077 — -0.163 -0.033 -0.814 —
Dys -0.153 0.059 — — -0.085 0.041 — —
Ln(V) 1.422 1.263 1.000 1.740 1.123 0.915 0.877 0.948
Ln(L) 0.701 0.704 0.615 0528 0.568 0.642 0.615 0.429
w -0.023 -0.007 -0.016 -0.005 -0.030 ~0.001 -0.010 0.020
S -0.030 -0.028 ~0.008 -0.018 -0.026 -0.021 -0.010 -0.018

Note: SV=single vehicle; OB-opposite direction; SBsame direction; IB-intersecting direction; MMichigan; CA=California; WA=Washington;
and IL=lllinois.

intersecting traffic volume; the confounding factors like driver nent on AADT at a 5% significance level. Although it does not
behaviors and so on. Some of the issues are out of control of theindicate we can use pooled data from different states with confi-
traffic agencies and researchers. Hence, successfully using the&lence, it proves the consistency of the exposure function among
available data resource will require a unique approach for recon-different states and, if the data sample is small, using pooled state
ciling missing or unavailable factors. Using the nonlinear rela- data remains an alternative to increase the sample size.
tionship between the crash count and volume provides meaning- The estimates for the exposure coefficients show the different
ful output for the safety model without losing its accuracy. values due to the crash type. However, whether or not specific
The other component of exposure, segment length, also exhib-levels within crash type are significantly different from each other
its variation by crash type, though to a lesser extent. The exponents still unclear until a multiple means comparison method is un-
on segment length is essentially close to 1.0 for SV crashes, andertaken. A Tukey multiple means comparison was run in SAS
entirely intuitive result analogous to the vehicle-miles exposure (SAS 1990 to identify differences by crash type for the exponent
measure commonly used now, while it is significantly lower than on AADT. Keeping in mind that this procedure requires the same
1.0 for the multiple vehicle crashes. Finding different coefficients assumptions as the ANOVA procedure, we observe that signifi-
for AADT and segment length for each crash type shows that the cant differences exist between the exponents on volume for multi-
two factors must be addressed separately when accounting forwvehicle opposite direction or same direction crashes and single
exposure to crashes. vehicle crashes and there is no significant difference between the
In the two-way ANOVA test, in order to compare the state and exponents on volume for single vehicle and multi-vehicle inter-
crash type effects on the exposure factors AADT and segmentsecting direction crashgsee Table % The reason the exponent
length, a two way ANOVA design is applied to test the exponents for single vehicle crashes is not significantly different from that
of AADT and segment length. There are two null hypotheses: the for intersecting direction multivehicle crashes may be due to
first assumes that there is no regiofsthate effect on the expo- unincluded effects in the crash prediction model for intersecting
sure functions; the second that there is no crash type effect on thalirection crashes, such as driveway or minor intersecting road
exposure functions. In order to meet the ANOVA normality and volumes.
equal variance assumption, we use a natural log transformation
for the data. Note that the independence assumption of the
ANOVA is not valid here; the results are to be interpreted in the Table 3. Analysis of Variance Table for Effects on Exponents\6n
nature of exploratory analysis. Table 3 displays the two-way ggyrce DE

. Mean square  F value p value
ANOVA results for regional effect and crash type effect on the
AADT in the prediction model. Crash type 3 0.39 7.95 0.0067
Thep value for the crash type factor rejects the null hypothesis State effect 3 0.046 0.96 0.4545
that there is no crash type effect on the exponents on AADT at a Error 9 0.049 — —
5% level of significance. However, we are not able to reject the Total 15 — — —

hypothesis that there is no significant regional effect on the expo- Note: DF=degree of freedom.
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Table 4. Tukey Test for Exponents ovi andL for Different Crash Types type and regionalstate$ factors. The ANOVA outputs demon-
Crash types VA La strate the necessity of disaggregating the crashes by type, but are
not able to reject the hypothesis that each state has different ex-

SV A A ponents. In other words, there is no significant difference for ex-
ID A B B posure functions from state to state. The nonlinear relationship
oD B A between crash frequency and segment length indicates that our
SD B B models omit important explanatory factors that are likely to be
Note: S\V=single vehicle; ID=intersection direction; OB opposite di- correlated with the segment length. The differences in the expo-
rection; and SB-same direction. nent on segment length among crash types revealed by the
“ evel indicated by the same letter code is not significantly different from ANOVA and Tukey’s test suggest that these factors could be re-
each other. lated to intersecting volumes, for example the number of drive-

ways or minor intersections along the segment. The authors do

The resulting exponents on segment length rank upwardly not recommend using these exponents on segment length for pre-
from ID, SD, OD, to SV. Moreover, the test results show that the dicting crashes on segments other than from the population
exponents on ID and SD differ significantly from those on SV and sampled; as with any other statistical estimating exercise, findings
OD, demonstrating that there are important explanatory factors must be recalibrated before being applied to other populations.
left out of the model that correlate with segment length. These  Related research by the authors has investigated a more disag-
findings are reasonable, because the segment length has less effegtegate model accounting for temporal effects as well as crash
on the ID and SD crashes which are closely related to the numbertype. Furthermore, the exposure factors includes hourly flow rate
of driveways along the segment rather than the length of the by direction rather than AADT. New modeling techniques are
segment, while OD and SV crashes are more likely to be relatedemployed to explore the relationship between number of crashes
to the length of the segment, and have exponents close to 1.0. Inand exposure function using hourly flow rate and segment length
other words, segment length may be confounded with unincludedat a disaggregate level.
factors such as driveways and minor intersections along the seg-
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